Python爬虫从入门到放弃(二十一)之 Scrapy分布式部署

简介: 按照上一篇文章中我们将代码放到远程主机是通过拷贝或者git的方式,但是如果考虑到我们又多台远程主机的情况,这种方式就比较麻烦,那有没有好用的方法呢?这里其实可以通过scrapyd,下面是这个scrapyd的github地址:https://github.

按照上一篇文章中我们将代码放到远程主机是通过拷贝或者git的方式,但是如果考虑到我们又多台远程主机的情况,这种方式就比较麻烦,那有没有好用的方法呢?这里其实可以通过scrapyd,下面是这个scrapyd的github地址:https://github.com/scrapy/scrapyd

当在远程主机上安装了scrapyd并启动之后,就会再远程主机上启动一个web服务,默认是6800端口,这样我们就可以通过http请求的方式,通过接口的方式管理我们scrapy项目,这样就不需要在一个一个电脑连接拷贝过着通过git,关于scrapyd官方文档地址:http://scrapyd.readthedocs.io/en/stable/

安装scrapyd

安装scrapyd:pip install scrapyd

这里我在另外一台ubuntu linux虚拟机中同样安装scrapy以及scrapyd等包,保证所要运行的爬虫需要的包都完成安装,这样我们就有了两台linux,包括上篇文章中我们已经有的linux环境

在这里有个小问题需要注意,默认scrapyd启动是通过scrapyd就可以直接启动,这里bind绑定的ip地址是127.0.0.1端口是:6800,这里为了其他虚拟机访问讲ip地址设置为0.0.0.0
scrapyd的配置文件:/usr/local/lib/python3.5/dist-packages/scrapyd/default_scrapyd.conf

这样我们就可以通过浏览器访问:

关于部署

如何通过scrapyd部署项目,这里官方文档提供一个地址:https://github.com/scrapy/scrapyd-client,即通过scrapyd-client进行操作

这里的scrapyd-client主要实现以下内容:

  1. 把我们本地代码打包生成egg文件
  2. 根据我们配置的url上传到远程服务器上

我们将我们本地的scrapy项目中scrapy.cfg配置文件进行配置:

我们其实还可以设置用户名和密码,不过这里没什么必要,只设置了url
这里设置url一定要注意:url = http://192.168.1.9:6800/addversion.json
最后的addversion.json不能少

我们在本地安装pip install scrapy_client,安装完成后执行:scrapyd-deploy

zhaofandeMBP:zhihu_user zhaofan$ scrapyd-deploy
Packing version 1502177138
Deploying to project "zhihu_user" in http://192.168.1.9:6800/addversion.json
Server response (200):
{"node_name": "fan-VirtualBox", "status": "ok", "version": "1502177138", "spiders": 1, "project": "zhihu_user"}

zhaofandeMBP:zhihu_user zhaofan$ 

看到status:200表示已经成功

关于常用操作API

listprojects.json列出上传的项目列表

zhaofandeMBP:zhihu_user zhaofan$ curl http://192.168.1.9:6800/listprojects.json
{"node_name": "fan-VirtualBox", "status": "ok", "projects": ["zhihu_user"]}
zhaofandeMBP:zhihu_user zhaofan$ 

listversions.json列出有某个上传项目的版本

zhaofandeMBP:zhihu_user zhaofan$ curl http://192.168.1.9:6800/listversions.json\?project\=zhihu_user
{"node_name": "fan-VirtualBox", "status": "ok", "versions": ["1502177138"]}
zhaofandeMBP:zhihu_user zhaofan$ 

schedule.json远程任务的启动

下面我们启动的三次就表示我们启动了三个任务,也就是三个调度任务来运行zhihu这个爬虫

zhaofandeMBP:zhihu_user zhaofan$ curl http://192.168.1.9:6800/schedule.json -d project=zhihu_user -d spider=zhihu
{"node_name": "fan-VirtualBox", "status": "ok", "jobid": "97f1b5027c0e11e7b07a080027bbde73"}
zhaofandeMBP:zhihu_user zhaofan$ curl http://192.168.1.9:6800/schedule.json -d project=zhihu_user -d spider=zhihu
{"node_name": "fan-VirtualBox", "status": "ok", "jobid": "99595aa87c0e11e7b07a080027bbde73"}
zhaofandeMBP:zhihu_user zhaofan$ curl http://192.168.1.9:6800/schedule.json -d project=zhihu_user -d spider=zhihu
{"node_name": "fan-VirtualBox", "status": "ok", "jobid": "9abb1ba27c0e11e7b07a080027bbde73"}
zhaofandeMBP:zhihu_user zhaofan$

同时当启动完成后,我们可以通过页面查看jobs,这里因为我远端服务器并没有安装scrapy_redis,所以显示任务是完成了,我点开日志并能看到详细的日志情况:

这里出错的原因就是我上面忘记在ubuntu虚拟机安装scrapy_redis以及pymongo模块,进行
pip install scrapy_redis pymongo安装后重新启动,就可以看到已经在运行的任务,同时点开Log日志也能看到爬取到的内容:

listjobs.json列出所有的jobs任务
上面是通过页面显示所有的任务,这里是通过命令获取结果

zhaofandeMBP:zhihu_user zhaofan$ curl http://192.168.1.9:6800/listjobs.json\?project\=zhihu_user
{"node_name": "fan-VirtualBox", "status": "ok", "running": [], "pending": [], "finished": [{"start_time": "2017-08-08 15:53:00.510050", "spider": "zhihu", "id": "97f1b5027c0e11e7b07a080027bbde73", "end_time": "2017-08-08 15:53:01.416139"}, {"start_time": "2017-08-08 15:53:05.509337", "spider": "zhihu", "id": "99595aa87c0e11e7b07a080027bbde73", "end_time": "2017-08-08 15:53:06.627125"}, {"start_time": "2017-08-08 15:53:10.509978", "spider": "zhihu", "id": "9abb1ba27c0e11e7b07a080027bbde73", "end_time": "2017-08-08 15:53:11.542001"}]}
zhaofandeMBP:zhihu_user zhaofan$ 

cancel.json取消所有运行的任务
这里可以将上面启动的所有jobs都可以取消:

zhaofandeMBP:zhihu_user zhaofan$ curl http://192.168.1.9:6800/cancel.json -d project=zhihu_user -d job=0f5cdabc7c1011e7b07a080027bbde73
{"node_name": "fan-VirtualBox", "status": "ok", "prevstate": "running"}
zhaofandeMBP:zhihu_user zhaofan$ curl http://192.168.1.9:6800/cancel.json -d project=zhihu_user -d job=63f8e12e7c1011e7b07a080027bbde73
{"node_name": "fan-VirtualBox", "status": "ok", "prevstate": "running"}
zhaofandeMBP:zhihu_user zhaofan$ curl http://192.168.1.9:6800/cancel.json -d project=zhihu_user -d job=63f8e12f7c1011e7b07a080027bbde73
{"node_name": "fan-VirtualBox", "status": "ok", "prevstate": "running"}

这样当我们再次通过页面查看,就可以看到所有的任务都是finshed状态:

我相信看了上面这几个方法你一定会觉得真不方便还需要输入那么长,所以有人替你干了件好事把这些API进行的再次封装:https://github.com/djm/python-scrapyd-api

关于python-scrapyd-api

该模块可以让我们直接在python代码中进行上述那些api的操作
首先先安装该模块:pip install python-scrapyd-api 
使用方法如下,这里只演示了简单的例子,其他方法其实使用很简单按照规则写就行:

from scrapyd_api import ScrapydAPI


scrapyd = ScrapydAPI('http://192.168.1.9:6800')
res = scrapyd.list_projects()
res2 = scrapyd.list_jobs('zhihu_user')
print(res)
print(res2)

Cancel a scheduled job
scrapyd.cancel('project_name', '14a6599ef67111e38a0e080027880ca6')

Delete a project and all sibling versions
scrapyd.delete_project('project_name')

Delete a version of a project
scrapyd.delete_version('project_name', 'version_name')

Request status of a job
scrapyd.job_status('project_name', '14a6599ef67111e38a0e080027880ca6')

List all jobs registered
scrapyd.list_jobs('project_name')

List all projects registered
scrapyd.list_projects()

List all spiders available to a given project
scrapyd.list_spiders('project_name')

List all versions registered to a given project
scrapyd.list_versions('project_name')

Schedule a job to run with a specific spider
scrapyd.schedule('project_name', 'spider_name')

Schedule a job to run while passing override settings
settings = {'DOWNLOAD_DELAY': 2}

Schedule a job to run while passing extra attributes to spider initialisation
scrapyd.schedule('project_name', 'spider_name', extra_attribute='value')

 

所有的努力都值得期许,每一份梦想都应该灌溉!
目录
相关文章
|
2天前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
1月前
|
分布式计算 DataWorks 大数据
分布式Python计算服务MaxFrame测评
一文带你入门分布式Python计算服务MaxFrame
84 23
分布式Python计算服务MaxFrame测评
|
1月前
|
分布式计算 DataWorks 数据处理
产品测评 | 上手分布式Python计算服务MaxFrame产品最佳实践
MaxFrame是阿里云自研的分布式计算框架,专为大数据处理设计,提供高效便捷的Python开发体验。其主要功能包括Python编程接口、直接利用MaxCompute资源、与MaxCompute Notebook集成及镜像管理功能。本文基于MaxFrame最佳实践,详细介绍了在DataWorks中使用MaxFrame创建数据源、PyODPS节点和MaxFrame会话的过程,并展示了如何通过MaxFrame实现分布式Pandas处理和大语言模型数据处理。测评反馈指出,虽然MaxFrame具备强大的数据处理能力,但在文档细节和新手友好性方面仍有改进空间。
|
28天前
|
数据采集 JSON 数据格式
Python爬虫:京东商品评论内容
京东商品评论接口为商家和消费者提供了重要工具。商家可分析评论优化产品,消费者则依赖评论做出购买决策。该接口通过HTTP请求获取评论内容、时间、点赞数等数据,支持分页和筛选好评、中评、差评。Python示例代码展示了如何调用接口并处理返回的JSON数据。应用场景包括产品优化、消费者决策辅助、市场竞争分析及舆情监测。
|
1月前
|
SQL 分布式计算 数据处理
云产品评测|分布式Python计算服务MaxFrame | 在本地环境中使用MaxFrame + 基于MaxFrame实现大语言模型数据处理
本文基于官方文档,介绍了由浅入深的两个部分实操测试,包括在本地环境中使用MaxFrame & 基于MaxFrame实现大语言模型数据处理,对步骤有详细说明。体验下来对MaxCompute的感受是很不错的,值得尝试并使用!
48 1
|
1月前
|
SQL 分布式计算 DataWorks
MaxCompute MaxFrame评测 | 分布式Python计算服务MaxFrame(完整操作版)
在当今数字化迅猛发展的时代,数据信息的保存与分析对企业决策至关重要。MaxCompute MaxFrame是阿里云自研的分布式计算框架,支持Python编程接口、兼容Pandas接口并自动进行分布式计算。通过MaxCompute的海量计算资源,企业可以进行大规模数据处理、可视化数据分析及科学计算等任务。本文将详细介绍如何开通MaxCompute和DataWorks服务,并使用MaxFrame进行数据操作。包括创建项目、绑定数据源、编写PyODPS 3节点代码以及执行SQL查询等内容。最后,针对使用过程中遇到的问题提出反馈建议,帮助用户更好地理解和使用MaxFrame。
|
1月前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
82 3
|
1月前
|
分布式计算 数据处理 MaxCompute
云产品评测|分布式Python计算服务MaxFrame
云产品评测|分布式Python计算服务MaxFrame
72 2
|
1月前
|
人工智能 分布式计算 数据处理
有奖评测,基于分布式 Python 计算服务 MaxFrame 进行数据处理
阿里云MaxCompute MaxFrame推出分布式Python计算服务MaxFrame评测活动,助力开发者高效完成大规模数据处理、可视化探索及ML/AI开发。活动时间为2024年12月17日至2025年1月31日,参与者需体验MaxFrame并发布评测文章,有机会赢取精美礼品。
|
2月前
|
人工智能 分布式计算 数据处理
云产品评测:MaxFrame — 分布式Python计算服务的最佳实践与体验
阿里云推出的MaxFrame是一款高性能分布式计算平台,专为大规模数据处理和AI应用设计。它提供了强大的Python编程接口,支持分布式Pandas操作,显著提升数据处理速度(3-5倍)。MaxFrame在大语言模型数据处理中表现出色,具备高效内存管理和任务调度能力。然而,在开通流程、API文档及功能集成度方面仍有改进空间。总体而言,MaxFrame在易用性和计算效率上具有明显优势,但在开放性和社区支持方面有待加强。
66 9