大数据的导入与导出,可以用到两个方法

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据的导入与导出,可以用到两个方法:

(1)、用微软提供的bcp命令

用法: bcp {dbtable | query} {in | out | queryout | format} 数据文件

  [-m 最大错误数]             [-f 格式化文件]         [-e 错误文件]

  [-F 首行]                   [-L 末行]             [-b 批大小]

  [-n 本机类型]               [-c 字符类型]         [-w 宽字符类型]

  [-N 将非文本保持为本机类型] [-V 文件格式版本]     [-q 带引号的标识符]

  [-C 代码页说明符]           [-t 字段终止符]       [-r 行终止符]

  [-i 输入文件]               [-o 输出文件]         [-a 数据包大小]

  [-S 服务器名称]             [-U 用户名]           [-P 密码]

  [-T 可信连接]               [-v 版本]             [-R 允许使用区域设置]

  [-k 保留空值]               [-E 保留标识值]

  [-h"加载提示"]              [-x 生成 xml 格式化文件]

在使用这个前要进行path设置:

C:\Program Files\Microsoft SQL Server\90\Tools\Binn

设置这个命令是为了在cmdshell中关联上bcp.exe

bcp stored.dbo.student out c:\test1.txt -c –T这种写法主要是在cmd下使用的;

EXEC [master..]xp_cmdshell 'bcp stored.dbo.student out c:\test1.txt -c -T'这种写法主要是在sql新查询编辑窗口中使用的。

--将数据导入到数据库中,导入的时候要注意时间日期的问题,导入的格式要与数据库中的设定格式要一致

--将查询的结果导出

exec xp_cmdshell 'bcp "select * from stored..student" queryout c:\data.txt -c -T'

看到了吧,上面的那个stored..student这里是两个点,要注意!!

 

exec xp_cmdshell 'bcp stored.dbo.studenttest in c:\test1.txt -c -T'


本文转自sucre03 51CTO博客,原文链接:http://blog.51cto.com/sucre/416803,如需转载请自行联系原作者

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
机器学习/深度学习 数据采集 算法
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
本文围绕 Java 大数据机器学习模型在金融衍生品定价中的应用展开,分析定价现状与挑战,阐述技术原理与应用,结合真实案例与代码给出实操方案,助力提升金融衍生品定价的准确性与效率。
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
|
8月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
量子计算作为革命性的计算范式,凭借量子比特和量子门的独特优势,展现出在大数据处理中的巨大潜力。本文探讨了量子计算的基本原理、在大数据处理中的应用及面临的挑战与前景,展望了其在金融、医疗和物流等领域的广泛应用。
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
【10月更文挑战第31天】量子计算凭借其独特的量子比特和量子门技术,为大数据处理带来了革命性的变革。相比传统计算机,量子计算在计算效率、存储容量及并行处理能力上具有显著优势,能有效应对信息爆炸带来的挑战。本文探讨了量子计算如何通过量子叠加和纠缠等原理,加速数据处理过程,提升计算效率,特别是在金融、医疗和物流等领域中的具体应用案例,同时也指出了量子计算目前面临的挑战及其未来的发展方向。
|
数据采集 自然语言处理 大数据
​「Python大数据」词频数据渲染词云图导出HTML
使用Python,本文展示数据聚类和办公自动化,焦点在于通过jieba分词处理VOC数据,构建词云图并以HTML保存。`wordCloud.py`脚本中,借助pyecharts生成词云,如图所示,关键词如"Python"、"词云"等。示例代码创建了词云图实例,添加词频数据,并输出到"wordCloud.html"。
340 1
​「Python大数据」词频数据渲染词云图导出HTML
|
关系型数据库 MySQL 大数据
教你使用Python玩转MySQL数据库,大数据导入不再是难题!
教你使用Python玩转MySQL数据库,大数据导入不再是难题!
317 1
|
SQL 消息中间件 分布式计算
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
183 0
|
SQL 存储 分布式计算
"SQLTask携手Tunnel:打造高效海量数据导出解决方案,轻松应对大数据挑战
【8月更文挑战第22天】SQLTask搭配Tunnel实现高效海量数据导出。SQLTask擅长执行复杂查询,但直接导出受限(约1万条)。Tunnel专注数据传输,无大小限制。二者结合,先用SQLTask获取数据,再通过Tunnel高效导出至目标位置(如CSV、OSS等),适用于大数据场景,需配置节点及连接,示例代码展示全过程,满足企业级数据处理需求。
226 2
|
机器学习/深度学习 设计模式 人工智能
面向对象方法在AIGC和大数据集成项目中的应用
【8月更文第12天】随着人工智能生成内容(AIGC)和大数据技术的快速发展,企业面临着前所未有的挑战和机遇。AIGC技术能够自动产生高质量的内容,而大数据技术则能提供海量数据的支持,两者的结合为企业提供了强大的竞争优势。然而,要充分利用这些技术,就需要构建一个既能处理大规模数据又能高效集成机器学习模型的集成框架。面向对象编程(OOP)以其封装性、继承性和多态性等特点,在构建这样的复杂系统中扮演着至关重要的角色。
237 3
|
SQL 分布式计算 数据可视化
基于Hadoop的大数据可视化方法
【8月更文第28天】在大数据时代,有效地处理和分析海量数据对于企业来说至关重要。Hadoop作为一个强大的分布式数据处理框架,能够处理PB级别的数据量。然而,仅仅完成数据处理还不够,还需要将这些数据转化为易于理解的信息,这就是数据可视化的重要性所在。本文将详细介绍如何使用Hadoop处理后的数据进行有效的可视化分析,并会涉及一些流行的可视化工具如Tableau、Qlik等。
456 0

热门文章

最新文章