.NET多线程编程(3)——线程同步

简介:
    随着对多线程学习的深入,你可能觉得需要了解一些有关线程共享资源的问题. .NET framework提供了很多的类和数据类型来控制对共享资源的访问。

  考虑一种我们经常遇到的情况:有一些全局变量和共享的类变量,我们需要从不同的线程来更新它们,可以通过使用System.Threading.Interlocked类完成这样的任务,它提供了原子的,非模块化的整数更新操作。

  还有你可以使用System.Threading.Monitor类锁定对象的方法的一段代码,使其暂时不能被别的线程访问。

  System.Threading.WaitHandle类的实例可以用来封装等待对共享资源的独占访问权的操作系统特定的对象。尤其对于非受管代码的互操作问题。

  System.Threading.Mutex用于对多个复杂的线程同步的问题,它也允许单线程的访问。

  像ManualResetEventAutoResetEvent这样的同步事件类支持一个类通知其他事件的线程。

  不讨论线程的同步问题,等于对多线程编程知之甚少,但是我们要十分谨慎的使用多线程的同步。在使用线程同步时,我们事先就要要能够正确的确定是那个对象和方法有可能造成死锁(死锁就是所有的线程都停止了相应,都在等者对方释放资源)。还有赃数据的问题(指的是同一时间多个线程对数据作了操作而造成的不一致),这个不容易理解,这么说吧,有XY两个线程,线程X从文件读取数据并且写数据到数据结构,线程Y从这个数据结构读数据并将数据送到其他的计算机。假设在Y读数据的同时,X写入数据,那么显然Y读取的数据与实际存储的数据是不一致的。这种情况显然是我们应该避免发生的。少量的线程将使得刚才的问题发生的几率要少的多,对共享资源的访问也更好的同步。

  .NET FrameworkCLR提供了三种方法来完成对共享资源 ,诸如全局变量域,特定的代码段,静态的和实例化的方法和域。

  (1 代码域同步:使用Monitor类可以同步静态/实例化的方法的全部代码或者部分代码段。不支持静态域的同步。在实例化的方法中,this指针用于同步;而在静态的方法中,类用于同步,这在后面会讲到。

  (2 手工同步:使用不同的同步类(诸如WaitHandle, Mutex, ReaderWriterLock, ManualResetEvent, AutoResetEventInterlocked等)创建自己的同步机制。这种同步方式要求你自己手动的为不同的域和方法同步,这种同步方式也可以用于进程间的同步和对共享资源的等待而造成的死锁解除。

  (3 上下文同步:使用SynchronizationAttributeContextBoundObject对象创建简单的,自动的同步。这种同步方式仅用于实例化的方法和域的同步。所有在同一个上下文域的对象共享同一个锁。
Monitor Class

  在给定的时间和指定的代码段只能被一个线程访问,Monitor 类非常适合于这种情况的线程同步。这个类中的方法都是静态的,所以不需要实例化这个类。下面一些静态的方法提供了一种机制用来同步对象的访问从而避免死锁和维护数据的一致性。

  Monitor.Enter 方法:在指定对象上获取排他锁。

  Monitor.TryEnter 方法:试图获取指定对象的排他锁。

  Monitor.Exit 方法:释放指定对象上的排他锁。

  Monitor.Wait 方法:释放对象上的锁并阻塞当前线程,直到它重新获取该锁。

  Monitor.Pulse 方法:通知等待队列中的线程锁定对象状态的更改。

  Monitor.PulseAll 方法:通知所有的等待线程对象状态的更改。

  通过对指定对象的加锁和解锁可以同步代码段的访问。Monitor.Enter, Monitor.TryEnter  Monitor.Exit用来对指定对象的加锁和解锁。一旦获取(调用了Monitor.Enter)指定对象(代码段)的锁,其他的线程都不能获取该锁。举个例子来说吧,线程X获得了一个对象锁,这个对象锁可以释放的(调用Monitor.Exit(object) or Monitor.Wait)。当这个对象锁被释放后,Monitor.Pulse方法和 Monitor.PulseAll方法通知就绪队列的下一个线程进行和其他所有就绪队列的线程将有机会获取排他锁。线程X释放了锁而线程Y获得了锁,同时调用Monitor.Wait的线程X进入等待队列。当从当前锁定对象的线程(线程Y)受到了PulsePulseAll,等待队列的线程就进入就绪队列。线程X重新得到对象锁时,Monitor.Wait才返回。如果拥有锁的线程(线程Y)不调用PulsePulseAll,方法可能被不确定的锁定。Pulse, PulseAll and Wait必须是被同步的代码段鄂被调用。对每一个同步的对象,你需要有当前拥有锁的线程的指针,就绪队列和等待队列(包含需要被通知锁定对象的状态变化的线程)的指针。

  你也许会问,当两个线程同时调用Monitor.Enter会发生什么事情?无论这两个线程地调用Monitor.Enter是多么地接近,实际上肯定有一个在前,一个在后,因此永远只会有一个获得对象锁。既然Monitor.Enter是原子操作,那么CPU是不可能偏好一个线程而不喜欢另外一个线程的。为了获取更好的性能,你应该延迟后一个线程的获取锁调用和立即释放前一个线程的对象锁。对于privateinternal的对象,加锁是可行的,但是对于external对象有可能导致死锁,因为不相关的代码可能因为不同的目的而对同一个对象加锁。

  如果你要对一段代码加锁,最好的是在try语句里面加入设置锁的语句,而将Monitor.Exit放在finally语句里面。对于整个代码段的加锁,你可以使用MethodImplAttribute(在System.Runtime.CompilerServices命名空间)类在其构造器中设置同步值。这是一种可以替代的方法,当加锁的方法返回时,锁也就被释放了。如果需要要很快释放锁,你可以使用Monitor类和C# lock的声明代替上述的方法。

  让我们来看一段使用Monitor类的代码:
public void some_method()


int a=100; 

int b=0; 

Monitor.Enter(this); 

//say we do something here. 

int c=a/b; 

Monitor.Exit(this); 

}

  上面的代码运行会产生问题。当代码运行到int c=a/b; 的时候,会抛出一个异常,Monitor.Exit将不会返回。因此这段程序将挂起,其他的线程也将得不到锁。有两种方法可以解决上面的问题。第一个方法是:将代码放入try…finally内,在finally调用Monitor.Exit,这样的话最后一定会释放锁。第二种方法是:利用C#lock()方法。调用这个方法和调用Monitoy.Enter的作用效果是一样的。但是这种方法一旦代码执行超出范围,释放锁将不会自动的发生。见下面的代码:
public void some_method()


int a=100; 

int b=0; 

lock(this); 

//say we do something here. 

int c=a/b; 

}

  C# lock申明提供了与Monitoy.EnterMonitoy.Exit同样的功能,这种方法用在你的代码段不能被其他独立的线程中断的情况。
WaitHandle Class

  WaitHandle类作为基类来使用的,它允许多个等待操作。这个类封装了win32的同步处理方法。WaitHandle对象通知其他的线程它需要对资源排他性的访问,其他的线程必须等待,直到WaitHandle不再使用资源和等待句柄没有被使用。下面是从它继承来的几个类:

  Mutex 类:同步基元也可用于进程间同步。

  AutoResetEvent:通知一个或多个正在等待的线程已发生事件。无法继承此类。

  ManualResetEvent:当通知一个或多个正在等待的线程事件已发生时出现。无法继承此类。

  这些类定义了一些信号机制使得对资源排他性访问的占有和释放。他们有两种状态:signaled  nonsignaledSignaled状态的等待句柄不属于任何线程,除非是nonsignaled状态。拥有等待句柄的线程不再使用等待句柄时用set方法,其他的线程可以调用Reset方法来改变状态或者任意一个WaitHandle方法要求拥有等待句柄,这些方法见下面:

  WaitAll:等待指定数组中的所有元素收到信号。

  WaitAny:等待指定数组中的任一元素收到信号。

  WaitOne:当在派生类中重写时,阻塞当前线程,直到当前的 WaitHandle 收到信号。
  这些wait方法阻塞线程直到一个或者更多的同步对象收到信号。

  WaitHandle对象封装等待对共享资源的独占访问权的操作系统特定的对象无论是收管代码还是非受管代码都可以使用。但是它没有Monitor使用轻便,Monitor是完全的受管代码而且对操作系统资源的使用非常有效率。
Mutex Class  
  Mutex是另外一种完成线程间和跨进程同步的方法,它同时也提供进程间的同步。它允许一个线程独占共享资源的同时阻止其他线程和进程的访问。Mutex的名字就很好的说明了它的所有者对资源的排他性的占有。一旦一个线程拥有了Mutex,想得到Mutex的其他线程都将挂起直到占有线程释放它。Mutex.ReleaseMutex方法用于释放Mutex,一个线程可以多次调用wait方法来请求同一个Mutex,但是在释放Mutex的时候必须调用同样次数的Mutex.ReleaseMutex。如果没有线程占有Mutex,那么Mutex的状态就变为signaled,否则为nosignaled。一旦Mutex的状态变为signaled,等待队列的下一个线程将会得到MutexMutex类对应与win32CreateMutex,创建Mutex对象的方法非常简单,常用的有下面几种方法:


  一个线程可以通过调用WaitHandle.WaitOne  WaitHandle.WaitAny  WaitHandle.WaitAll得到Mutex的拥有权。如果Mutex不属于任何线程,上述调用将使得线程拥有Mutex,而且WaitOne会立即返回。但是如果有其他的线程拥有MutexWaitOne将陷入无限期的等待直到获取Mutex。你可以在WaitOne方法中指定参数即等待的时间而避免无限期的等待Mutex。调用Close作用于Mutex将释放拥有。一旦Mutex被创建,你可以通过GetHandle方法获得Mutex的句柄而给WaitHandle.WaitAny WaitHandle.WaitAll 方法使用。

  下面是一个示例:
public void some_method()


int a=100; 

int b=20; 

Mutex firstMutex = new Mutex(false); 

FirstMutex.WaitOne(); 

//some kind of processing can be done here. 

Int x=a/b; 

FirstMutex.Close(); 

}
  在上面的例子中,线程创建了Mutex,但是开始并没有申明拥有它,通过调用WaitOne方法拥有Mutex
Synchronization Events
  同步时间是一些等待句柄用来通知其他的线程发生了什么事情和资源是可用的。他们有两个状态:signaled and nonsignaledAutoResetEvent  ManualResetEvent就是这种同步事件。
AutoResetEvent Class
  这个类可以通知一个或多个线程发生事件。当一个等待线程得到释放时,它将状态转换为signaled。用set方法使它的实例状态变为signaled。但是一旦等待的线程被通知时间变为signaled,它的转台将自动的变为nonsignaled。如果没有线程侦听事件,转台将保持为signaled。此类不能被继承。
ManualResetEvent Class
  这个类也用来通知一个或多个线程事件发生了。它的状态可以手动的被设置和重置。手动重置时间将保持signaled状态直到ManualResetEvent.Reset设置其状态为nonsignaled,或保持状态为nonsignaled直到ManualResetEvent.Set设置其状态为signaled。这个类不能被继承。
Interlocked Class
  它提供了在线程之间共享的变量访问的同步,它的操作时原子操作,且被线程共享.你可以通过Interlocked.Increment  Interlocked.Decrement来增加或减少共享变量.它的有点在于是原子操作,也就是说这些方法可以代一个整型的参数增量并且返回新的值,所有的操作就是一步.你也可以使用它来指定变量的值或者检查两个变量是否相等,如果相等,将用指定的值代替其中一个变量的值.




本文转自 qianshao 51CTO博客,原文链接:http://blog.51cto.com/qianshao/203194,如需转载请自行联系原作者

目录
相关文章
|
8天前
|
安全 程序员 API
|
1天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
18 1
|
5天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
6天前
|
Java 开发者
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
31 4
|
6天前
|
消息中间件 供应链 Java
掌握Java多线程编程的艺术
【10月更文挑战第29天】 在当今软件开发领域,多线程编程已成为提升应用性能和响应速度的关键手段之一。本文旨在深入探讨Java多线程编程的核心技术、常见问题以及最佳实践,通过实际案例分析,帮助读者理解并掌握如何在Java应用中高效地使用多线程。不同于常规的技术总结,本文将结合作者多年的实践经验,以故事化的方式讲述多线程编程的魅力与挑战,旨在为读者提供一种全新的学习视角。
28 3
|
7天前
|
安全 Java 调度
Java中的多线程编程入门
【10月更文挑战第29天】在Java的世界中,多线程就像是一场精心编排的交响乐。每个线程都是乐团中的一个乐手,他们各自演奏着自己的部分,却又和谐地共同完成整场演出。本文将带你走进Java多线程的世界,让你从零基础到能够编写基本的多线程程序。
19 1
|
11天前
|
缓存 Java 调度
Java中的多线程编程:从基础到实践
【10月更文挑战第24天】 本文旨在为读者提供一个关于Java多线程编程的全面指南。我们将从多线程的基本概念开始,逐步深入到Java中实现多线程的方法,包括继承Thread类、实现Runnable接口以及使用Executor框架。此外,我们还将探讨多线程编程中的常见问题和最佳实践,帮助读者在实际项目中更好地应用多线程技术。
18 3
|
13天前
|
监控 安全 Java
Java多线程编程的艺术与实践
【10月更文挑战第22天】 在现代软件开发中,多线程编程是一项不可或缺的技能。本文将深入探讨Java多线程编程的核心概念、常见问题以及最佳实践,帮助开发者掌握这一强大的工具。我们将从基础概念入手,逐步深入到高级主题,包括线程的创建与管理、同步机制、线程池的使用等。通过实际案例分析,本文旨在提供一种系统化的学习方法,使读者能够在实际项目中灵活运用多线程技术。
|
11天前
|
缓存 安全 Java
Java中的多线程编程:从基础到实践
【10月更文挑战第24天】 本文将深入探讨Java中的多线程编程,包括其基本原理、实现方式以及常见问题。我们将从简单的线程创建开始,逐步深入了解线程的生命周期、同步机制、并发工具类等高级主题。通过实际案例和代码示例,帮助读者掌握多线程编程的核心概念和技术,提高程序的性能和可靠性。
11 2
|
12天前
|
Java
Java中的多线程编程:从基础到实践
本文深入探讨Java多线程编程,首先介绍多线程的基本概念和重要性,接着详细讲解如何在Java中创建和管理线程,最后通过实例演示多线程的实际应用。文章旨在帮助读者理解多线程的核心原理,掌握基本的多线程操作,并能够在实际项目中灵活运用多线程技术。