pandas.DataFrame.groupby

简介:

pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。计算分组摘要统计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样的函数。应用组内转换或其他运算,如规格化、线性回归、排名或选取子集等。计算透视表或交叉表。执行分位数分析以及其他分组分析。


DataFrame. groupby ( by=Noneaxis=0level=Noneas_index=Truesort=Truegroup_keys=Truesqueeze=False, **kwargs ) [source]

Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.

Parameters:

by : mapping, function, str, or iterable

Used to determine the groups for the groupby. If by is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see .align()method). If an ndarray is passed, the values are used as-is determine the groups. A str or list of strs may be passed to group by the columns in self

axis : int, default 0

level : int, level name, or sequence of such, default None

If the axis is a MultiIndex (hierarchical), group by a particular level or levels

as_index : boolean, default True

For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output

sort : boolean, default True

Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.

group_keys : boolean, default True

When calling apply, add group keys to index to identify pieces

squeeze : boolean, default False

reduce the dimensionality of the return type if possible, otherwise return a consistent type

Returns:

GroupBy object

Examples

DataFrame results

>>> data.groupby(func, axis=0).mean()
>>> data.groupby(['col1', 'col2'])['col3'].mean()

DataFrame with hierarchical index

>>> data.groupby(['col1', 'col2']).mean()


1、首先来看看下面这个非常简单的表格型数据集(以DataFrame的形式):

1
2
3
4
5
6
7
8
9
10
11
12
>>>  import  pandas as pd
>>> df  =  pd.DataFrame({ 'key1' :[ 'a' 'a' 'b' 'b' 'a' ],
...      'key2' :[ 'one' 'two' 'one' 'two' 'one' ],
...      'data1' :np.random.randn( 5 ),
...      'data2' :np.random.randn( 5 )})
>>> df
       data1     data2 key1 key2
0  - 0.410673   0.519378     a  one
1  - 2.120793   0.199074     a  two
2   0.642216  - 0.143671     b  one
3   0.975133  - 0.592994     b  two
4  - 1.017495  - 0.530459     a  one

假设你想要按key1进行分组,并计算data1列的平均值,我们可以访问data1,并根据key1调用groupby:

1
2
3
>>> grouped  =  df[ 'data1' ].groupby(df[ 'key1' ])
>>> grouped
<pandas.core.groupby.SeriesGroupBy  object  at  0x04120D70 >

变量grouped是一个GroupBy对象,它实际上还没有进行任何计算,只是含有一些有关分组键df['key1']的中间数据而已,然后我们可以调用GroupBy的mean方法来计算分组平均值:

1
2
3
4
5
>>> grouped.mean()
key1
a       - 1.182987
b        0.808674
dtype: float64

说明:数据(Series)根据分组键进行了聚合,产生了一个新的Series,其索引为key1列中的唯一值。之所以结果中索引的名称为key1,是因为原始DataFrame的列df['key1']就叫这个名字。

2、如果我们一次传入多个数组,就会得到不同的结果:

1
2
3
4
5
6
7
8
>>> means  =  df[ 'data1' ].groupby([df[ 'key1' ], df[ 'key2' ]]).mean()
>>> means
key1  key2
a     one     - 0.714084
       two     - 2.120793
b     one      0.642216
       two      0.975133
dtype: float64

通过两个键对数据进行了分组,得到的Series具有一个层次化索引(由唯一的键对组成):

1
2
3
4
5
>>> means.unstack()
key2       one       two
key1                   
a     - 0.714084  - 2.120793
b      0.642216   0.975133

在上面这些示例中,分组键均为Series。实际上,分组键可以是任何长度适当的数组:

1
2
3
4
5
6
7
8
>>> states  =  np.array([ 'Ohio' 'California' 'California' 'Ohio' 'Ohio' ])
>>> years  =  np.array([ 2005 2005 2006 2005 2006 ])
>>> df[ 'data1' ].groupby([states, years]).mean()
California   2005    - 2.120793
             2006     0.642216
Ohio         2005     0.282230
             2006    - 1.017495
dtype: float64

 3、此外,你还可以将列名(可以是字符串、数字或其他Python对象)用作分组将:

1
2
3
4
5
6
7
8
9
10
11
12
>>> df.groupby( 'key1' ).mean()
          data1     data2
key1                   
a     - 1.182987   0.062665
b      0.808674  - 0.368333
>>> df.groupby([ 'key1' 'key2' ]).mean()
               data1     data2
key1 key2                   
a    one   - 0.714084  - 0.005540
      two   - 2.120793   0.199074
b    one    0.642216  - 0.143671
      two    0.975133  - 0.592994

 说明:在执行df.groupby('key1').mean()时,结果中没有key2列。这是因为df['key2']不是数值数据,所以被从结果中排除了。默认情况下,所有数值列都会被聚合,虽然有时可能会被过滤为一个子集。

无论你准备拿groupby做什么,都有可能会用到GroupBy的size方法,它可以返回一个含有分组大小的Series:

1
2
3
4
5
6
7
>>> df.groupby([ 'key1' 'key2' ]).size()
key1  key2
a     one      2
       two      1
b     one      1
       two      1
dtype: int64

 注意:分组键中的任何缺失值都会被排除在结果之外。

4、对分组进行迭代

GroupBy对象支持迭代,可以产生一组二元元组(由分组名和数据块组成)。看看下面这个简单的数据集:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>>  for  name, group  in  df.groupby( 'key1' ):
...      print (name)
...      print (group)
...
a
       data1     data2 key1 key2
0  - 0.410673   0.519378     a  one
1  - 2.120793   0.199074     a  two
4  - 1.017495  - 0.530459     a  one
b
       data1     data2 key1 key2
2   0.642216  - 0.143671     b  one
3   0.975133  - 0.592994     b  two

 对于多重键的情况,元组的第一个元素将会是由键值组成的元组:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>>  for  (k1, k2), group  in  df.groupby([ 'key1' 'key2' ]):
...      print  k1, k2
...      print  group
...
a one
       data1     data2 key1 key2
0  - 0.410673   0.519378     a  one
4  - 1.017495  - 0.530459     a  one
a two
       data1     data2 key1 key2
1  - 2.120793   0.199074     a  two
b one
       data1     data2 key1 key2
2   0.642216  - 0.143671     b  one
b two
       data1     data2 key1 key2
3   0.975133  - 0.592994     b  two

 当然,你可以对这些数据片段做任何操作。有一个你可能会觉得有用的运算:将这些数据片段做成一个字典:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> pieces  =  dict ( list (df.groupby( 'key1' )))
>>> pieces[ 'b' ]
       data1     data2 key1 key2
2   0.642216  - 0.143671     b  one
3   0.975133  - 0.592994     b  two
>>> df.groupby( 'key1' )
<pandas.core.groupby.DataFrameGroupBy  object  at  0x0413AE30 >
>>>  list (df.groupby( 'key1' ))
[( 'a' ,       data1     data2 key1 key2
0  - 0.410673   0.519378     a  one
1  - 2.120793   0.199074     a  two
4  - 1.017495  - 0.530459     a  one), ( 'b' ,       data1     data2 key1 key2
2   0.642216  - 0.143671     b  one
3   0.975133  - 0.592994     b  two)]

 groupby默认是在axis=0上进行分组的,通过设置也可以在其他任何轴上进行分组。那上面例子中的df来说,我们可以根据dtype对列进行分组:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
>>> df.dtypes
data1    float64
data2    float64
key1       object
key2       object
dtype:  object
>>> grouped  =  df.groupby(df.dtypes, axis = 1 )
>>>  dict ( list (grouped))
{dtype( 'O' ):   key1 key2
0     a  one
1     a  two
2     b  one
3     b  two
4     a  one, dtype( 'float64' ):       data1     data2
0  - 0.410673   0.519378
1  - 2.120793   0.199074
2   0.642216  - 0.143671
3   0.975133  - 0.592994
4  - 1.017495  - 0.530459 }

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> grouped
<pandas.core.groupby.DataFrameGroupBy  object  at  0x041288F0 >
>>>  list (grouped)
[(dtype( 'float64' ),       data1     data2
0  - 0.410673   0.519378
1  - 2.120793   0.199074
2   0.642216  - 0.143671
3   0.975133  - 0.592994
4  - 1.017495  - 0.530459 ), (dtype( 'O' ),   key1 key2
0     a  one
1     a  two
2     b  one
3     b  two
4     a  one)]

 5、选取一个或一组列

对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的,即:

1
2
3
4
5
6
>>> df.groupby( 'key1' )[ 'data1' ]
<pandas.core.groupby.SeriesGroupBy  object  at  0x06615FD0 >
>>> df.groupby( 'key1' )[ 'data2' ]
<pandas.core.groupby.SeriesGroupBy  object  at  0x06615CB0 >
>>> df.groupby( 'key1' )[[ 'data2' ]]
<pandas.core.groupby.DataFrameGroupBy  object  at  0x06615F10 >

 和以下代码是等效的:

1
2
3
4
5
6
>>> df[ 'data1' ].groupby([df[ 'key1' ]])
<pandas.core.groupby.SeriesGroupBy  object  at  0x06615FD0 >
>>> df[[ 'data2' ]].groupby([df[ 'key1' ]])
<pandas.core.groupby.DataFrameGroupBy  object  at  0x06615F10 >
>>> df[ 'data2' ].groupby([df[ 'key1' ]])
<pandas.core.groupby.SeriesGroupBy  object  at  0x06615E30 >

 尤其对于大数据集,很可能只需要对部分列进行聚合。例如,在前面那个数据集中,如果只需计算data2列的平均值并以DataFrame形式得到结果,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> df.groupby([ 'key1' 'key2' ])[[ 'data2' ]].mean()
               data2
key1 key2         
a    one   - 0.005540
      two    0.199074
b    one   - 0.143671
      two   - 0.592994
>>> df.groupby([ 'key1' 'key2' ])[ 'data2' ].mean()
key1  key2
a     one     - 0.005540
       two      0.199074
b     one     - 0.143671
       two     - 0.592994
Name: data2, dtype: float64

 这种索引操作所返回的对象是一个已分组的DataFrame(如果传入的是列表或数组)或已分组的Series(如果传入的是标量形式的单个列明):

1
2
3
4
5
6
7
8
9
10
>>> s_grouped  =  df.groupby([ 'key1' 'key2' ])[ 'data2' ]
>>> s_grouped
<pandas.core.groupby.SeriesGroupBy  object  at  0x06615B10 >
>>> s_grouped.mean()
key1  key2
a     one     - 0.005540
       two      0.199074
b     one     - 0.143671
       two     - 0.592994
Name: data2, dtype: float64

 6、通过字典或Series进行分组

除数组以外,分组信息还可以其他形式存在,来看一个DataFrame示例:

1
2
3
4
5
6
7
8
9
10
11
12
>>> people  =  pd.DataFrame(np.random.randn( 5 5 ),
...     columns = [ 'a' 'b' 'c' 'd' 'e' ],
...     index = [ 'Joe' 'Steve' 'Wes' 'Jim' 'Travis' ]
... )
>>> people
                a         b         c         d         e
Joe      0.306336  - 0.139431   0.210028  - 1.489001  - 0.172998
Steve    0.998335   0.494229   0.337624  - 1.222726  - 0.402655
Wes      1.415329   0.450839  - 1.052199   0.731721   0.317225
Jim      0.550551   3.201369   0.669713   0.725751   0.577687
Travis  - 2.013278  - 2.010304   0.117713  - 0.545000  - 1.228323
>>> people.ix[ 2 : 3 , [ 'b' 'c' ]]  =  np.nan

 假设已知列的分组关系,并希望根据分组计算列的总计:

1
2
3
4
5
6
>>> mapping  =  { 'a' : 'red' 'b' : 'red' 'c' : 'blue' ,
...      'd' : 'blue' 'e' : 'red' 'f' : 'orange' }
>>> mapping
{ 'a' 'red' 'c' 'blue' 'b' 'red' 'e' 'red' 'd' 'blue' 'f' 'orange' }
>>>  type (mapping)
< type  'dict' >

 现在,只需将这个字典传给groupby即可:

1
2
3
4
5
6
7
8
9
10
>>> by_column  =  people.groupby(mapping, axis = 1 )
>>> by_column
<pandas.core.groupby.DataFrameGroupBy  object  at  0x066150F0 >
>>> by_column. sum ()
             blue       red
Joe     - 1.278973  - 0.006092
Steve   - 0.885102   1.089908
Wes      0.731721   1.732554
Jim      1.395465   4.329606
Travis  - 0.427287  - 5.251905

 Series也有同样的功能,它可以被看做一个固定大小的映射。对于上面那个例子,如果用Series作为分组键,则pandas会检查Series以确保其索引跟分组轴是对齐的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> map_series  =  pd.Series(mapping)
>>> map_series
a       red
b       red
c      blue
d      blue
e       red
f    orange
dtype:  object
>>> people.groupby(map_series, axis = 1 ).count()
         blue  red
Joe         2     3
Steve       2     3
Wes         1     2
Jim         2     3
Travis      2     3

 7、通过函数进行分组

相较于字典或Series,Python函数在定义分组映射关系时可以更有创意且更为抽象。任何被当做分组键的函数都会在各个索引值上被调用一次,其返回值就会被用作分组名称。

具体点说,以DataFrame为例,其索引值为人的名字。假设你希望根据人名的长度进行分组,虽然可以求取一个字符串长度数组,但其实仅仅传入len函数即可:

1
2
3
4
5
>> people.groupby( len ). sum ()
           a         b         c         d         e
3   2.272216   3.061938   0.879741  - 0.031529   0.721914
5   0.998335   0.494229   0.337624  - 1.222726  - 0.402655
6  - 2.013278  - 2.010304   0.117713  - 0.545000  - 1.228323

 将函数跟数组、列表、字典、Series混合使用也不是问题,因为任何东西最终都会被转换为数组:

1
2
3
4
5
6
7
>>> key_list  =  [ 'one' 'one' 'one' 'two' 'two' ]
>>> people.groupby([ len , key_list]). min ()
               a         b         c         d         e
3  one   0.306336  - 0.139431   0.210028  - 1.489001  - 0.172998
   two   0.550551   3.201369   0.669713   0.725751   0.577687
5  one   0.998335   0.494229   0.337624  - 1.222726  - 0.402655
6  two  - 2.013278  - 2.010304   0.117713  - 0.545000  - 1.228323

 8、根据索引级别分组

层次化索引数据集最方便的地方在于它能够根据索引级别进行聚合。要实现该目的,通过level关键字传入级别编号或名称即可:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
>>> columns  =  pd.MultiIndex.from_arrays([[ 'US' 'US' 'US' 'JP' 'JP' ],
...     [ 1 3 5 1 3 ]], names = [ 'cty' 'tenor' ])
>>> columns
MultiIndex
[US   1 ,      3 ,      5 , JP   1 ,      3 ]
>>> hier_df  =  pd.DataFrame(np.random.randn( 4 5 ), columns = columns)
>>> hier_df
cty          US                            JP         
tenor          1          3          5          1          3
0      - 0.166600   0.248159  - 0.082408  - 0.710841  - 0.097131
1      - 1.762270   0.687458   1.235950  - 1.407513   1.304055
2       1.089944   0.258175  - 0.749688  - 0.851948   1.687768
3      - 0.378311  - 0.078268   0.247147  - 0.018829   0.744540
>>> hier_df.groupby(level = 'cty' , axis = 1 ).count()
cty  JP  US
0      2    3
1      2    3
2      2    3
3      2    3



转载。原文:http://blog.csdn.net/leonis_v/article/details/51832916

目录
相关文章
|
2月前
|
SQL JSON 数据库
DataFrame
【10月更文挑战第15天】
43 7
|
2月前
|
数据采集 数据处理 索引
DataFrame
【10月更文挑战第13天】
82 2
|
SQL 存储 分布式计算
DataFrame 介绍_ DataFrame 是什么 | 学习笔记
快速学习 DataFrame 介绍_ DataFrame 是什么
1148 0
DataFrame 介绍_ DataFrame 是什么 | 学习笔记
|
2月前
|
数据挖掘 Python
DataFrame.corr
【10月更文挑战第15天】
42 4
|
3月前
|
数据挖掘 Python
pandas中的groupby函数应用
pandas中的groupby函数应用
17 0
pandas中的groupby函数应用
|
3月前
|
SQL JSON 分布式计算
Dataframe
Dataframe
114 2
|
3月前
|
数据挖掘 数据处理 Python
Pandas中groupby后的数据排序技巧
Pandas中groupby后的数据排序技巧
154 0
|
4月前
|
索引 Python
Pandas学习笔记之Dataframe
Pandas学习笔记之Dataframe
|
存储 数据挖掘 索引
Pandas之Series(一)
Pandas之Series(一)
82 0
|
存储 数据挖掘 Python
为什么你需要Pandas的DataFrame
为什么你需要Pandas的DataFrame
101 0