“爸爸,什么是机器学习呀?”

简介:
本文来自AI新媒体量子位(QbitAI)

爸爸,什么是机器学习呀?

难以回答!抓了抓开始脱发的脑壳,爸比还是被这个问题KO了。这个有些学术的问题,如何给孩子解答?

近日,计算机科学博士Daniel Tunkelang就在Quora上回答了这个问题——

不如我们由机器学习中的分类问题入手,教计算机学习哪些食物好吃,哪些难吃。

和人类不一样,计算机没有嘴巴,不能品尝食物。所以,我们需要用很多食物样例(标记的训练数据)教会计算机。这项样例中有美味的食物(正例),也有恶心的(负例)。对于每个被标记的示例,我们给计算机提供了描述食物(特征)的方法。

正例被标记为“美味”,比如巧克力冰淇淋、披萨、草莓等。负例被标记为“恶心”,比如凤尾鱼、花椰菜和球芽甘蓝。

在真正的机器学习系统中,你可能需要更多的训练数据,但3正3负的例子够我们了解概念了。

现在,我们需要一些特征。不妨就将这些样例设置为甜、咸和蔬菜三个特征,因为为二元特性,所以每种食物的每个特征都被赋予“是”或“否”的值。

有了这些训练数据后,计算机的工作就是从这些数据中总结一个公式(模型)。这样,当它会遇到新食物时,它能根据模型决定食物是美味还是恶心的。

一种模型是点系统(线性模型)。如果具备每个特性,就会得到一定分数(权重),如果不具备就没有分数。然后,模型将食物的点数加起来,得到最终分。

模型里有一个分界点,若得分高于分界点,模型就判定食物美味;如果分数低于分界点,就判定为难吃。

根据训练数据,模型中的特征分可能会被设置为甜3分,咸1分,松脆1分,蔬菜为-1分。则巧克力冰淇淋、披萨、草莓、凤尾鱼、花椰菜、和球芽甘蓝在模型中的得分如下:

权重让选择分界点更容易,因为正例都得分≥2,负例得分≤1。

总能正确找到权重和分界点不太容易。即使找到了,最终可能会得到一个只适用于这个训练数据的模型,但当我们用新例子时,模型效果就没这么好了(过度拟合)。

理想的模型不仅在训练数据中正确率高,在新例中仍然有效(泛化)。通常,简单模型比复杂模型(奥卡姆剃刀)更容易一般化。

我们可以不使用线性模型,构建决策树也是个好方法。在决策树中,只能问能用“是”和“否”回答的问题。

用训练数据让决策树答对并不难,在这个示例中训练数据是这样利用的:

这是蔬菜吗?

  • 如果是,则难吃。
  • 如果不是,那它是甜的吗?
  • 如果是,则好吃。
  • 如果不是,那它是松脆的吗?
  • 如果是,则好吃。
  • 如果不是,则难吃。

如同线性模型,我们需要担心过度拟合,不能让决策树太深。所以这意味着最终可能会有一个模型,虽然在我们的训练数据上会犯错,但能对新数据更好泛化。

希望孩子能听懂这个机器学习的解释~

最后,原文地址(请注意科学前往):

https://www.quora.com/How-do-you-explain-machine-learning-to-a-child/answer/Daniel-Tunkelang

本文作者:安妮
原文发布时间:2017-10-30 
相关文章
|
8月前
|
机器学习/深度学习 数据可视化 算法
泰酷辣!探索七种常用的机器学习图型
泰酷辣!探索七种常用的机器学习图型
484 0
|
机器学习/深度学习 算法
机器学习-西瓜书、南瓜书第六章
支持向量机(Support Vector Machine),简称SVM,是一种经典的二分类模型,属于监督学习算法。
135 0
机器学习-西瓜书、南瓜书第六章
|
机器学习/深度学习 算法
机器学习-西瓜书、南瓜书第四章
基于树结构来进行决策,体现人类在面临决策问题时一种很自然的处理机制
88 0
机器学习-西瓜书、南瓜书第四章
|
机器学习/深度学习 数据采集 算法
机器学习-西瓜书、南瓜书第三章
回归任务最常用的性能度量是均方误差,因为均方误差有比较好的几何意义,对应了最常用的**“欧氏距离”,最小二乘法就是基于均方误差进行模型求解的。 求解均方误差最小化的过程称为参数估计
124 0
机器学习-西瓜书、南瓜书第三章
|
机器学习/深度学习
机器学习-西瓜书、南瓜书第五章
神经网络起源于生物神经元的生物原理,生物神经元通常包括细胞体、树突和轴突等部分。其中,树突适用于接受输入信息,突触对输入信息进行处理,达到一定条件后由轴突产生输出,此时神经元表现为激活兴奋的状态。
124 0
机器学习-西瓜书、南瓜书第五章
|
机器学习/深度学习 算法 数据挖掘
机器学习-西瓜书第一、二章
数据集:所有数据的集合 训练集:训练样本的集合 属性(特征):某事物或对象在某方面表现的性质 属性值:属性的取值 属性空间/样本空间/输入空间:属性张成的空间 泛化能力:学得模型适用于新样本的能力(泛化能力强更好地适用于样本空间)
182 0
机器学习-西瓜书第一、二章
|
机器学习/深度学习 人工智能 分布式计算
《从机器学习谈起》读书摘要
《从机器学习谈起》读书摘要
221 0
《从机器学习谈起》读书摘要
|
机器学习/深度学习 算法 数据挖掘
机器学习篇—大厂笔试题(一)
机器学习篇—大厂笔试题
1416 0
机器学习篇—大厂笔试题(一)
|
机器学习/深度学习 数据采集 并行计算
机器学习篇—大厂笔试题(二)
机器学习篇—大厂笔试题
2352 0
机器学习篇—大厂笔试题(二)
|
机器学习/深度学习 数据采集 人工智能
机器学习篇—大厂笔试题(三)
机器学习篇—大厂笔试题
3464 0