Java Nio中的三种内存映射缓冲区---MappedByteBuffer

简介: 开始有点跟不上实际思路了, 今天暂停吧。

开始有点跟不上实际思路了,

今天暂停吧。


作个记录。



package com.ronsoft.books.nio.channels;

import java.io.File;
import java.io.RandomAccessFile;
import java.nio.ByteBuffer;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;

public class MapFile {

	public static void main(String[] args) throws Exception {
		// TODO Auto-generated method stub
		File tempFile = File.createTempFile("mmaptest", null);
		RandomAccessFile file = new RandomAccessFile(tempFile, "rw");
		FileChannel channel = file.getChannel();
		ByteBuffer temp = ByteBuffer.allocate(100);
		temp.put("This is the file content".getBytes());
		temp.flip();
		channel.write(temp, 0);
		temp.clear();
		temp.put("This is more file content".getBytes());
		temp.flip();
		channel.write(temp, 8192);
		
		MappedByteBuffer ro = channel.map(FileChannel.MapMode.READ_ONLY, 0, channel.size());
		MappedByteBuffer rw = channel.map(FileChannel.MapMode.READ_WRITE, 0, channel.size());
		MappedByteBuffer cow = channel.map(FileChannel.MapMode.PRIVATE, 0, channel.size());
		
		System.out.println("Begin");
		showBuffers(ro, rw, cow);
		
		cow.position(8);
		cow.put("COW".getBytes());
		System.out.println("Change to COW buffer");
		showBuffers(ro, rw, cow);
		
		rw.position(9);
		rw.put(" R/W".getBytes());
		rw.position(8194);
		rw.put(" R/W".getBytes());
		rw.force();
		System.out.println("Change to R/W buffer");
		showBuffers(ro, rw, cow);
		
		temp.clear();
		temp.put("Channel write ".getBytes());
		temp.flip();
		channel.write(temp, 0);
		temp.rewind();
		channel.write(temp, 8202);
		System.out.println("Write on channel");
		showBuffers(ro, rw, cow);
		
		cow.position(8207);
		cow.put(" COW2".getBytes());
		System.out.println("Second change to COW buffer");
		showBuffers(ro, rw, cow);
		
		rw.position(0);
		rw.put(" R/W2 ".getBytes());
		rw.position(8210);
		rw.put(" R/W2 ".getBytes());
		rw.force();
		System.out.println("Second change to R/W buffer");
		showBuffers(ro, rw, cow);
		
		
		channel.close();
		file.close();
		tempFile.delete();
		

	}
	
	public static void showBuffers(ByteBuffer ro, ByteBuffer rw,
			ByteBuffer cow) throws Exception {
		dumpBuffer("R/O", ro);
		dumpBuffer("R/W", rw);
		dumpBuffer("COW", cow);
		System.out.println("");
		
	}
	
	public static void dumpBuffer(String prefix, ByteBuffer buffer) throws Exception {
		System.out.print(prefix + ": '");
		int nulls = 0;
		int limit = buffer.limit();
		for (int i = 0; i < limit; i++) {
			char c = (char)buffer.get(i);
			if (c == '\u0000') {
				nulls++;
				continue;
			}
			if (nulls != 0) {
				System.out.print("|[" + nulls + " nulls]|");
				nulls = 0;
			}
			System.out.print(c);
		}
		System.out.println("'");
	}

}
AI 代码解读


Begin
R/O: 'This is the file content|[8168 nulls]|This is more file content'
R/W: 'This is the file content|[8168 nulls]|This is more file content'
COW: 'This is the file content|[8168 nulls]|This is more file content'

Change to COW buffer
R/O: 'This is the file content|[8168 nulls]|This is more file content'
R/W: 'This is the file content|[8168 nulls]|This is more file content'
COW: 'This is COW file content|[8168 nulls]|This is more file content'

Change to R/W buffer
R/O: 'This is t R/Wile content|[8168 nulls]|Th R/Ws more file content'
R/W: 'This is t R/Wile content|[8168 nulls]|Th R/Ws more file content'
COW: 'This is COW file content|[8168 nulls]|Th R/Ws more file content'

Write on channel
R/O: 'Channel write le content|[8168 nulls]|Th R/Ws moChannel write t'
R/W: 'Channel write le content|[8168 nulls]|Th R/Ws moChannel write t'
COW: 'This is COW file content|[8168 nulls]|Th R/Ws moChannel write t'

Second change to COW buffer
R/O: 'Channel write le content|[8168 nulls]|Th R/Ws moChannel write t'
R/W: 'Channel write le content|[8168 nulls]|Th R/Ws moChannel write t'
COW: 'This is COW file content|[8168 nulls]|Th R/Ws moChann COW2ite t'

Second change to R/W buffer
R/O: ' R/W2 l write le content|[8168 nulls]|Th R/Ws moChannel  R/W2 t'
R/W: ' R/W2 l write le content|[8168 nulls]|Th R/Ws moChannel  R/W2 t'
COW: 'This is COW file content|[8168 nulls]|Th R/Ws moChann COW2ite t'

AI 代码解读


目录
打赏
0
0
0
0
83
分享
相关文章
|
3月前
|
Java内存模型深度解析:从理论到实践####
【10月更文挑战第21天】 本文深入探讨了Java内存模型(JMM)的核心概念与底层机制,通过剖析其设计原理、内存可见性问题及其解决方案,结合具体代码示例,帮助读者构建对JMM的全面理解。不同于传统的摘要概述,我们将直接以故事化手法引入,让读者在轻松的情境中领略JMM的精髓。 ####
59 6
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
50 0
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
53 8
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
93 5
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
88 6
Java内存管理与垃圾回收机制深度剖析####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,特别是其垃圾回收机制的工作原理、算法及实践优化策略。不同于传统的摘要概述,本文将以一个虚拟的“城市环卫系统”为比喻,生动形象地揭示Java内存管理的奥秘,旨在帮助开发者更好地理解并调优Java应用的性能。 ####
|
3月前
|
java内存区域
1)栈内存:保存所有的对象名称 2)堆内存:保存每个对象的具体属性 3)全局数据区:保存static类型的属性 4)全局代码区:保存所有的方法定义
33 1

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等