Chapter 5. The video output layer

简介: Table of Contents Data structures and main loop Methods used by video decoders How to write a video output plug-in How to write a YUV p...

Table of Contents

Data structures and main loop

Methods used by video decoders

How to write a video output plug-in

How to write a YUV plug-in

Data structures and main loop

Important data structures are defined in include/video.h and include/video_output.h. The main data structure is picture_t, which describes everything a video decoder thread needs. Please refer to this file for more information. Typically, p_data will be a pointer to YUV planarwps_clip_image1 picture.

Note also the subpicture_t structure. In fact the VLC SPU decoder only parses the SPU header, and converts the SPU graphical data to an internal format which can be renderedwps_clip_image2 much faster. So a part of the "real" SPU decoder lies in src/video_output/video_spu.c.

The vout_thread_t structure is much more complex, but you needn't understand everything. Basically the video output thread manages a heap of pictures and subpictures (5 by default). Every picture has a status (displayed, destroyed, empty...) and eventually a presentation time. The main job of the video output is an infinite loop to : [this is subject to change in the near future]

1. Find the next picture to display in the heap.

2. Find the current subpicture to display.

3. Render the picture (if the video output plug-in doesn't support YUV overlay). Rendering will call an optimized wps_clip_image3YUV plug-in, which will also do the scalingwps_clip_image4, add subtitles and an optional picture information field.

4. Sleep until the specified date.

5. Display the picture (plug-in function). For outputs which display RGB data, it is often accomplishedwps_clip_image5 with a buffer switchingwps_clip_image6. p_vout->p_buffer is an array of two buffers where the YUV transform takes place, and p_vout->i_buffer_index indicates the currently displayed buffer.

6. Manage events.

Methods used by video decoders

The video output exports a bunchwps_clip_image7 of functions so that decoders can send their decoded data. The most important function is vout_CreatePicture which allocates the picture buffer to the size indicated by the video decoder. It then just needs to feed (void *) p_picture->p_data with the decoded data, and call vout_DisplayPicture and vout_DatePicture upon necessary.

· picture_t * vout_CreatePicture ( vout_thread_t *p_vout, int i_type, int i_width, int i_height ) : Returns an allocated picture buffer. i_type will be for instance YUV_420_PICTURE, and i_width and i_height are in pixels.

Warning

If no picture is available in the heap, vout_CreatePicture will return NULL.

· vout_LinkPicture ( vout_thread_t *p_vout, picture_t *p_pic ) : Increases the refcount of the picture, so that it doesn't get accidentlywps_clip_image8 freed while the decoder still needs it. For instance, an I or P picture can still be needed after displaying to decode interleavedwps_clip_image9 B pictures.

· vout_UnlinkPicture ( vout_thread_t *p_vout, picture_t *p_pic ) : Decreases the refcount of the picture. An unlink must be done for every link previouslywps_clip_image10 made.

· vout_DatePicture ( vout_thread_t *p_vout, picture_t *p_pic ) : Gives the picture a presentation date. You can start working on a picture before knowing preciselywps_clip_image11 at what time it will be displayed. For instance to date an I or P picture, you must wait until you have decoded all previous B pictures (which are indeed placed after - decoding order != presentation order).

· vout_DisplayPicture ( vout_thread_t *p_vout, picture_t *p_pic ) : Tells the video output that a picture has been completely decoded and is ready to be renderedwps_clip_image12. It can be called before or after vout_DatePicture.

· vout_DestroyPicture ( vout_thread_t *p_vout, picture_t *p_pic ) : Marks the picture as empty (useful in case of a stream parsing error).

· subpicture_t * vout_CreateSubPicture ( vout_thread_t *p_vout, int i_channel, int i_type ) : Returns an allocated subpicture buffer. i_channel is the ID of the subpicture channel, i_type is DVD_SUBPICTURE or TEXT_SUBPICTURE, i_size is the length in bytes of the packet.

· vout_DisplaySubPicture ( vout_thread_t *p_vout, subpicture_t *p_subpic ) : Tells the video output that a subpicture has been completely decoded. It obsoletes wps_clip_image13the previous subpicture.

· vout_DestroySubPicture ( vout_thread_t *p_vout, subpicture_t *p_subpic ) : Marks the subpicture as empty.

How to write a video output plug-in

A video output takes care of the system calls to display the pictures and manage the output window. Have a look at plugins/x11/vout_x11.c. You must write the following functions :

1. int vout_Probe ( probedata_t *p_data ) : Returns a score between 0 and 999 to indicate whether it can run on the architecture. 999 is the best. p_data is currently unused.

2. int vout_Create ( vout_thread_t *p_vout ) : Basically, initializes and opens a new window. Returns TRUE if it failed.

3. int vout_Init ( vout_thread_t *p_vout ) : Creates optional picture buffers (for instance ximages or xvimages). Returns TRUE if it failed.

4. vout_End ( vout_thread_t *p_vout ) : Frees optional picture buffers.

5. int vout_Manage ( vout_thread_t *p_vout ) : Manages events (including for instance resize events).

6. vout_Display ( vout_thread_t *p_vout ) : Displays a previously rendered buffer.

7. vout_SetPalette ( vout_thread_t *p_vout, u16 *red, u16 *green, u16 *blue, u16 *transp ) : Sets the 8 bpp palette. red, green and blue are arrays of 256 unsigned shorts.

How to write a YUV plug-in

Look at the C source plugins/yuv/transforms_yuv.c. You need to redefine just the same transformations. Basically, it is a matrix wps_clip_image14multiplywps_clip_image15 operation. Good luck.

相关文章
UE Load texture images at runtime Plugin description
UE Load texture images at runtime Plugin description
94 0
A+B for Input-Output Practice
A+B for Input-Output Practice
|
机器学习/深度学习 自然语言处理 搜索推荐
TSAR: A Two-Stream AMR-enhanced Model for Document-level Event Argument Extraction论文解读
以往的研究大多致力于从单个句子中抽取事件,而文档级别的事件抽取仍未得到充分的研究。在本文中,我们专注于从整个文档中抽取事件论元
209 0
|
人工智能 自然语言处理 BI
CLIP-Event: Connecting Text and Images with Event Structures 论文解读
视觉-语言(V+L)预训练模型通过理解图像和文本之间的对齐关系,在支持多媒体应用方面取得了巨大的成功。
139 0
《Constrained Output Embeddings for End-to-End Code-Switching Speech Recognition with Only Monolingual Data》电子版地址
Constrained Output Embeddings for End-to-End Code-Switching Speech Recognition with Only Monolingual Data
80 0
《Constrained Output Embeddings for End-to-End Code-Switching Speech Recognition with Only Monolingual Data》电子版地址
《Audio Tagging with Compact Feedforward Sequential Memory Network and Audio-to-Audio Ratio Based Data Augmentation》电子版地址
Audio Tagging with Compact Feedforward Sequential Memory Network and Audio-to-Audio Ratio Based Data Augmentation
83 0
《Audio Tagging with Compact Feedforward Sequential Memory Network and Audio-to-Audio Ratio Based Data Augmentation》电子版地址
|
关系型数据库 MySQL 数据库管理