数组的连续最大子段和

简介:

  问题描述:输入是一个大小为n的整型数组,要求输出数组的任何连续子数组中的最大值。例如:输入的数组为array[10] = {31,-41,59,26,-53,58,97,-93,-23,84};输出最大连续子数组和为array[2...6]:187

  算法1:对所有满足0<=i<=j<=n的(i,j)整数对进行迭代,对每个整数对,程序都要计算array[i...j]的总和,并检验该总和是否大于迄今为止的最大总和。

算法1的伪代码描述如下:

复制代码
1 maxsofar = 0
2 for(i=0;i<n;++j)
3   for(j=i;j<n;++j)
4     tmepsum = 0
5 for(k=i;k<=j;++k)
6       tempsum += array[k]
7       maxsofar = max(maxsofar,tempmax)
复制代码

这段代码简洁明了,便于理解,但是程序执行的速度很慢,时间复杂度为O(n^3)。

  算法2:对于算法1有一个明显的方法可以使其运行起来快得多。使得时间复杂度控制住平方O(n^2)。

第一个平方算法注意到,array[i...j]的总和与前面计算出的总和(array[i...j-1])密切相关,利用这一点可以达到算法2。

算法2_1的伪代码描述如下:

1 maxsofar = 0
2 for(i=0;i<n;++i)
3   tempsum = 0;
4   for(j=i;j<n;++j)
5 tempsum += array[j]
6     maxsofar = max(maxsofar,tempsum)

第二个平方算法是引入一个数组curarray,大小也为n,通过空间来换取时间,通过访问外循环执行之前计算[0...i]各个连续字段总和。curarrary中的第i个元素包含array[0...i]中各个数的累加和,所以x[i...j]中各个数的总和可以通过计算curarray[j] -curarray[i-1]得到.

算法2_2的伪代码描述如下:

复制代码
1 curarray[-1] = 0
2 for(i=0;i<n;++i)
3   curarray[i] = curarray[i-1]+x[i]
4 maxsofar = 0
5 for(i=0;i<n;++i)
6    for(j=i;j<n;++j)
7       sum = curarray[j]-curarray[i-1]
8 maxsofar = max(maxsofar,sum)
复制代码

  算法3:可以考虑采用法治算法。初始问题是要处理大小为n的数组,所以可以将其划分为两个子数组a和b,然后递归的找出a、b中元素总和最大的子数组分别为MaxA、MaxB。而最大子数组要么在a中,要么在b中,要么跨越a和b之间的边界,我们将跨越边界的最大子数组记为MaxC。我们通过分治算法计算处了MaxA和MaxB,通过某种办法计算处MaxC。然后返回三个中的最大值就是我们所要的最大子数组和。算法的时间复杂度为O(nlogn)。如何计算MaxC呢?通过观察发现,MaxC在a中的部分是a中包含右边界的最大子数组,而MaxC在b中的部分是b中包含左边界的最大子数组。将这些综合一起我们得到算法3:

复制代码
 1 int maxsum3(1,n)
 2 {
 3   if(n<1)  //空数组
 4     return 0
 5   if(n==1)  
 6 //只有一个元素的数组
 7     return array[1]
 8    mid = n/2  //分为两部分
 9   lmax = tempsum =0
10   //包含右边界的最大子数组和
11   for(i=mid;i>=1;--i)
12     sum + array[i]
13   lmax = max(lmax,sum)
14   rmax = sum =0;//包含左边界的最大子数组和  
15  for(i=mid;i<n;++i)
16      sum += array[i] 
17    rmax = max(rmax,sum)
18   return max(lmax+rmax,maxsum3(1,mid),maxsum3(mid+1,n))
19 }
复制代码

  算法4:我们现在采用操作数组的最简单的算法:从数组最左端(元素x[0])开始扫描,一直到最右端(元素array[n-1])为止,并记下所遇到的最大总和的子数组。最大总和开始设为0.假设我们已经解决了array[0...i-1]的问题,那么如何将其扩展为包含x[i]的问题呢?我们用类似于分治算法的原理:前i个元素中,最大总和子数组要么在前i-1个元素中(将其存maxsofar中),要么其结束位置为i(将其存入maxendinghere中)。不从头开始计算结束位置为i的最大子数组,而是利用结束位置为i-1的最大子数组进行计算。这样就得到了算法4:

1 maxsofar = 0
2 maxendinghere = 0
3 for(i=0;i<n;++i)
4   maxendinghere = max(maxendinghere+array[i],0)
5 maxsofar = max(maxsofar,maxendinghere)

  理解这个程序的关键在于maxendinghere。在循环中第一个赋值语句之前,maxendinghere是结束位置为i-1的最大子数组的和,赋值语句将其修改为结束位置为i的最大子数组的和。若加上array[i]的后的结果为正值,则该赋值语句使maxendinghere增大x[i],若加上x[i]之后结果为负值,该赋值语句将maxendinghere重新设置为0(因为结束位置为i的最大子数组现在为空)。这个地方有些难度,需要认真思考揣摩。时间复杂度为O(n),线性算法,效率最高。

下面针对这4个算法写一个完成的程序来进行测试,程序如下:

复制代码
  1 。#include <iostream>
  2 using namespace std; //求两个数种最大值
  3 int max(const int m,const int n)
  4 {
  5    return m>n ? m : n;
  6 } //求三个整数中的最大值
  7 int max(const int x,const int y,const int z)
  8 {
  9   int temp = x>y ?  x : y;
 10   temp = temp > z ? temp : z;
 11   return temp;
 12 } //算法1函数实现
 13 int maxsum1(int *array,const size_t len)
 14 {
 15   int maxsofar = 0;
 16   int tempsum = 0;
 17   for(size_t i=0;i<len;++i)
 18     for(size_t  j=i;j<len;++j)
 19     {     
 20       tempsum = 0;
 21       for(size_t k =i;k<=j;++k)
 22       {
 23          tempsum += array[k];
 24          maxsofar = max(maxsofar,tempsum);
 25       }
 26     }
 27   return maxsofar;
 28 } //算法2.1的实现
 29 int maxsum2_1(int *array,const size_t len)
 30 {
 31   int maxsofar = 0;
 32   int tempsum = 0;
 33   for(size_t i=0;i<len;++i)
 34   {
 35       tempsum = 0;
 36       for(size_t  j=i;j<len;++j)
 37       {
 38          tempsum += array[j];
 39          maxsofar = max(maxsofar,tempsum);
 40       }
 41   }
 42   return maxsofar;
 43 } //算法2.2的实现
 44 int maxsum2_2(int *array,const size_t len)
 45 {
 46    int *curarray =NULL;
 47    int maxsofar = 0;
 48    if(len>0)
 49      curarray = new int[len];
 50    curarray[-1] = 0;
 51    for(size_t  i=0;i<len;++i)
 52      curarray[i] = curarray[i-1] + array[i];
 53    for(size_t  j=0;j<len;++j)
 54      for(size_t  k=j;k<len;++k)
 55          //tempsum = curarray[k] - curarray[j-1];
 56         maxsofar = max(maxsofar,curarray[k]-curarray[j-1]);
 57    return maxsofar;
 58 } //算法3的实现
 59 int maxsum3(int *array,const int begin,const int end)
 60 {
 61    int mid = 0;
 62    int lmax=0,rmax =0;
 63    int tempsum = 0;
 64    if(begin==end)
 65      return array[begin];
 66    mid = (begin+end) / 2;
 67    for(int i=mid;i>=begin;--i)
 68    {
 69         tempsum += array[i];
 70         lmax = max(lmax,tempsum);
 71    }
 72    tempsum = 0;
 73    for(int j=mid+1;j<=end;++j)
 74    {
 75      tempsum += array[j];
 76      rmax = max(rmax,tempsum);
 77    }
 78    return max(lmax+rmax,maxsum3(array,begin,mid),maxsum3(array,mid+1,end));
 79 } //算法4的实现
 80 int maxsum4(int *array,const size_t len)
 81 {
 82    int maxendinghere = 0;
 83    int maxsofar = 0;
 84    for(size_t  i=0;i<len;++i)
 85    { 
 86       maxendinghere = max(maxendinghere+array[i],0);
 87       maxsofar = max(maxsofar,maxendinghere);
 88    }
 89    return maxsofar;
 90 } int main()
 91 {
 92    int array[10] = {31,-41,59,26,-53,58,97,-93,-23,84};
 93    int choise;
 94    cout<<"1.算法1"<<endl;
 95    cout<<"2.算法2_1"<<endl;
 96    cout<<"1.算法1"<<endl;
 97    cout<<"3.算法3"<<endl;
 98    cout<<"4.算法4"<<endl;  
 99    cout<<"5.算法2_2"  <<endl;
100    cout<<"0.退出"<<endl;
101    while(1)
102    {
103      cout<<"选择算法:"; 
104      cin>>choise;
105      cout<<"数组的最大字段和为:";
106      switch(choise)
107      {
108      case 1:
109        cout<<maxsum1(array,10)<<endl;
110        break;
111      case 2:
112        cout<<maxsum2_1(array,10)<<endl;
113        break;
114      case 3:
115        cout<<maxsum3(array,0,9)<<endl;
116        break;
117      case 4:
118        cout<<maxsum4(array,10)<<endl;
119        break;
120      case 5:
121        cout<<maxsum2_2(array,10)<<endl;
122        break;
123      case 0:
124        exit(0);
125      }
126    }
127    return 0;
128 }
复制代码

参考文献:《编程珠玑》第二版 第八章 算法设计的艺术

相关文章
|
8月前
LeetCode 1550. 存在连续三个奇数的数组
LeetCode 1550. 存在连续三个奇数的数组
52 0
|
8月前
给定一个长度为n的数组,请将数组中元素按照奇偶性重新划分,所有奇数靠左边,所有偶数靠右边,然后分别对奇数、偶数部分进行排序
给定一个长度为n的数组,请将数组中元素按照奇偶性重新划分,所有奇数靠左边,所有偶数靠右边,然后分别对奇数、偶数部分进行排序
76 1
|
3月前
(剑指Offer)04、二维数组中的查找11、旋转数组的最小数字50、第一个只出现一次的字符(2021.12.02)
(剑指Offer)04、二维数组中的查找11、旋转数组的最小数字50、第一个只出现一次的字符(2021.12.02)
40 1
|
算法
【算法专题突破】双指针 - 最大连续1的个数 III(11)
【算法专题突破】双指针 - 最大连续1的个数 III(11)
41 0
剑指offer_数组---连续子数组的最大和
剑指offer_数组---连续子数组的最大和
52 0
|
数据处理
整数数组中最大子数组的和(2)—— 处理二维数组
将二维转化为一维处理,当子矩阵的上下行确定时,把上下行中每一列的数据当作一个单元,确定左右列的过程就是求以列为单元的一维数组的子数组最大和的过程,这种方法大大提高了效率
97 0
整数数组中最大子数组的和(2)—— 处理二维数组
|
Java
求整数数组中最大子数组的和(1)
绝大部分同学都已经做出来了单维数组的 求数组中最大子数组的和, 但是你不妨试一试:把你的程序编译为可执行文件, 然后执行 例如 maxsum.exe 输出就是最大子数组的和, 上面的例子就应该输出 16.
115 0
求整数数组中最大子数组的和(1)
使用二分法解决旋转数组的最小数字的问题
使用二分法解决旋转数组的最小数字的问题
96 0
使用二分法解决旋转数组的最小数字的问题
AcWing 720. 连续整数相加
AcWing 720. 连续整数相加
90 0
AcWing 720. 连续整数相加
AcWing 719. 连续奇数的和 2
AcWing 719. 连续奇数的和 2
51 0
AcWing 719. 连续奇数的和 2