《图论》——最短路径 Dijkstra算法(戴克斯特拉算法)

简介: 十大算法之Dijkstra算法: 最短路径是图论算法中的经典问题。图分为有向图、无向图,路径权值有正值、负值,针对不同的情况需要分别选用不同的算法。在维基上面给出了各种不同的场景应用不同的算法的基本原则:最短路问题。

十大算法之Dijkstra算法:

最短路径是图论算法中的经典问题。图分为有向图、无向图,路径权值有正值、负值,针对不同的情况需要分别选用不同的算法。在维基上面给出了各种不同的场景应用不同的算法的基本原则:最短路问题

针对无向图,正权值路径,采取Dijkstra算法


如上图,是求a到b的最短路径,这里并不限定b节点,修改为到任意节点的路径,问题是完全一样的。


首先需要记录每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新。每一个节点到原点的最短路径是其上一个节点(前驱节点)到原点的最短路径加上前驱节点到该节点的距离。以这个原则,经过N轮计算就能得到每一个节点的最短距离。


第一轮,可以计算出,2、3、4、5、6到原点1的距离分别为:[7, 9, -1, -1, 14]。-1表示无穷大。取其中最小的,为7,即可以确定1的最短路径为0,2为下一轮的前驱节点。同时确定2节点的最短路径为7,路线:1->2。


第二轮,取2节点为前驱节点,按照前驱节点的最短距离加上该节点与前驱节点的距离计算新的最短距离,可以得到3,4,5,6节点到原点的距离为:[17, 22, -1, -1],此时需要将这一轮得到的结果与上一轮的比较,3节点:17 > 9,最短路径仍然为9;4节点:22 < 无穷大,刷新4节点的最短路径为22;5节点:不变,仍然为无穷大;6节点:14 < 无穷大,取14,不变。则可以得到本轮的最短距离为:[9, 22, -1, 14],取最短路径最小的节点,为3,作为下一轮的前驱节点。同时确定3节点的最短路径为9,路线:1->3。


第三轮,同上,以3为前驱节点,得到4,5,6的计算距离为:[20, -1, 11],按照取最短路径的原则,与上一轮的进行比较,刷新为:[20, –1, 11],选定6为下一轮的前驱节点。同时取定6的最短路径为11,路线:1->3->6。


第四轮,同上,以6为前驱节点,得到4和5的计算距离为[20, 20],与上一轮进行比较,刷新后为[20, 20],二者相等只剩下两个节点,并且二者想等,剩下的计算已经不需要了。则两个节点的最短路径都为20。整个计算结束。4的最短路径为20,路线:1->3->4。5的最短路径为20,路线:1->3->6->5。


如果二者不相等,则还需要进行第五轮,先确定二者中的一个的最短路径和路线,再取定剩下的。直到整个5次循环都完成。

代码如下:


package Graph;

/*
 *Dijkstra,最短路径算法 
 */

public class Dijkstra {

	public static final int M = -1;
	static int[][] map = {
		{ 0,  7,  9,  M,  M, 14 }, 
        { 7,  0,  10, 15, M, M },
        { 9,  10, 0,  11, M, 2 }, 
        { M,  15, 11, 0,  6, M },
        { M,  M,  M,  6,  0, 9 }, 
        { 14, M,  2,  M,  9, 0 }
	};
	static int n =map.length;       //顶点的个数
	static int[] shortest = new int[n];  //存放从start到其他节点的最短路径
	static boolean[] visited = new boolean[n]; //标记当前该顶点的最短路径是否已经求出,true表示已经求出
	
	public static void main(String[] args) {
		int orig = 0; //起始点
		//寻找最短路径
		int[] shortPath = dijkstra_alg(orig);
		
		if(shortPath == null){
			return;
		}
		
		for(int i=0; i< shortPath.length; i++){
			System.out.println("从" + (orig + 1) + "出发到" + (i + 1) + "的最短距离为:"+ shortPath[i]);
			}
	}

	private static int[] dijkstra_alg(int orig) {
		// TODO Auto-generated method stub
		// 初始化,第一个顶点求出
        shortest[orig] = 0;
        visited[orig] = true;
		for(int count = 0; count != n-1; count ++)
		{
			//选出一个距离初始顶点最近的为标记顶点
			int k = M;
			int min = M;
			for(int i =0; i< n ; i++)//遍历每一个顶点
			{
				if( !visited[i] && map[orig][i] != M) //如果该顶点未被遍历过且与orig相连
				{
					if(min == -1 || min > map[orig][i]) //找到与orig最近的点
					{
						min = map[orig][i];
						k = i;
					}
				}
			}
			//正确的图生成的矩阵不可能出现K== M的情况
			if(k == M)
			{
				System.out.println("the input map matrix is wrong!");
				return null;
			}
			shortest[k] = min;
		    visited[k] = true;
			//以k为中心点,更新oirg到未访问点的距离
		    for (int i = 0; i < n; i++)
            {
                if (!visited[i] && map[k][i] != M)
                {
                    int callen = min + map[k][i];
                    if (map[orig][i] == M || map[orig][i] > callen)
                    {
                    	map[orig][i] = callen;
                    }
                }
            }
		}
		
		return shortest;
	}
}

运行结果如下:

从1出发到1的最短距离为:0
从1出发到2的最短距离为:7
从1出发到3的最短距离为:9
从1出发到4的最短距离为:20
从1出发到5的最短距离为:20
从1出发到6的最短距离为:11


相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
90 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
18天前
|
JSON 算法 数据挖掘
基于图论算法有向图PageRank与无向图Louvain算法构建指令的方式方法 用于支撑qwen agent中的统计相关组件
利用图序列进行数据解读,主要包括节点序列分析、边序列分析以及结合节点和边序列的综合分析。节点序列分析涉及节点度分析(如入度、出度、度中心性)、节点属性分析(如品牌、价格等属性的分布与聚类)、节点标签分析(如不同标签的分布及标签间的关联)。边序列分析则关注边的权重分析(如关联强度)、边的类型分析(如管理、协作等关系)及路径分析(如最短路径计算)。结合节点和边序列的分析,如子图挖掘和图的动态分析,可以帮助深入理解图的结构和功能。例如,通过子图挖掘可以发现具有特定结构的子图,而图的动态分析则能揭示图随时间的变化趋势。这些分析方法结合使用,能够从多个角度全面解读图谱数据,为决策提供有力支持。
|
2月前
|
存储 算法 程序员
迪杰斯特拉(Dijkstra)算法(C/C++)
迪杰斯特拉(Dijkstra)算法(C/C++)
|
4月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
8天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
14天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
1天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
10天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
7天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。