【大创_社区划分】——PageRank算法的解析与Python实现

简介: 一、什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO(^_^)。

一、什么是pagerank

PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO(^_^)。PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序。它的思想是模拟一个悠闲的上网者,上网者首先随机选择一个网页打开,然后在这个网页上呆了几分钟后,跳转到该网页所指向的链接,这样无所事事、漫无目的地在网页上跳来跳去,PageRank就是估计这个悠闲的上网者分布在各个网页上的概率。

二、最简单pagerank模型

互联网中的网页可以看出是一个有向图,其中网页是结点,如果网页A有链接到网页B,则存在一条有向边A->B,下面是一个简单的示例:


这个例子中只有四个网页,如果当前在A网页,那么悠闲的上网者将会各以1/3的概率跳转到B、C、D,这里的3表示A有3条出链,如果一个网页有k条出链,那么跳转任意一个出链上的概率是1/k,同理D到B、C的概率各为1/2,而B到C的概率为0。一般用转移矩阵表示上网者的跳转概率,如果用n表示网页的数目,则转移矩阵M是一个n*n的方阵;如果网页j有k个出链,那么对每一个出链指向的网页i,有M[i][j]=1/k,而其他网页的M[i][j]=0;上面示例图对应的转移矩阵如下:

初试时,假设上网者在每一个网页的概率都是相等的,即1/n,于是初试的概率分布就是一个所有值都为1/n的n维列向量V0,用V0去右乘转移矩阵M,就得到了第一步之后上网者的概率分布向量MV0,(nXn)*(nX1)依然得到一个nX1的矩阵。下面是V1的计算过程:

注意矩阵M中M[i][j]不为0表示用一个链接从j指向i,M的第一行乘以V0,表示累加所有网页到网页A的概率即得到9/24。得到了V1后,再用V1去右乘M得到V2,一直下去,最终V会收敛,即Vn=MV(n-1),上面的图示例,不断的迭代,最终V=[3/9,2/9,2/9,2/9]‘:

三、终止点问题

上述上网者的行为是一个马尔科夫过程的实例,要满足收敛性,需要具备一个条件:

  • 图是强连通的,即从任意网页可以到达其他任意网页:

互联网上的网页不满足强连通的特性,因为有一些网页不指向任何网页,如果按照上面的计算,上网者到达这样的网页后便走投无路、四顾茫然,导致前面累计得到的转移概率被清零,这样下去,最终的得到的概率分布向量所有元素几乎都为0。假设我们把上面图中C到A的链接丢掉,C变成了一个终止点,得到下面这个图:


对应的转移矩阵为:

连续迭代下去,最终所有元素都为0:

四、陷阱问题

另外一个问题就是陷阱问题,即有些网页不存在指向其他网页的链接,但存在指向自己的链接。比如下面这个图:


上网者跑到C网页后,就像跳进了陷阱,陷入了漩涡,再也不能从C中出来,将最终导致概率分布值全部转移到C上来,这使得其他网页的概率分布值为0,从而整个网页排名就失去了意义。如果按照上面图对应的转移矩阵为:

不断的迭代下去,就变成了这样:

五、解决终止点问题和陷阱问题

上面过程,我们忽略了一个问题,那就是上网者是一个悠闲的上网者,而不是一个愚蠢的上网者,我们的上网者是聪明而悠闲,他悠闲,漫无目的,总是随机的选择网页,他聪明,在走到一个终结网页或者一个陷阱网页(比如两个示例中的C),不会傻傻的干着急,他会在浏览器的地址随机输入一个地址,当然这个地址可能又是原来的网页,但这里给了他一个逃离的机会,让他离开这万丈深渊。模拟聪明而又悠闲的上网者,对算法进行改进,每一步,上网者可能都不想看当前网页了,不看当前网页也就不会点击上面的连接,而上悄悄地在地址栏输入另外一个地址,而在地址栏输入而跳转到各个网页的概率是1/n。假设上网者每一步查看当前网页的概率为a,那么他从浏览器地址栏跳转的概率为(1-a),于是原来的迭代公式转化为:


现在我们来计算带陷阱的网页图的概率分布:

重复迭代下去,得到:


六、用Python实现Page Rank算法


from numpy import *

a = array([[0,1,1,0],
           [1,0,0,1],
           [1,0,0,1],
           [1,1,0,0]],dtype = float)  #dtype指定为float

def graphMove(a):   #构造转移矩阵
    b = transpose(a)  #b为a的转置矩阵
    c = zeros((a.shape),dtype = float)
    for i in range(a.shape[0]):
        for j in range(a.shape[1]):
            c[i][j] = a[i][j] / (b[j].sum())  #完成初始化分配
    #print c,"\n===================================================="
    return c

def firstPr(c):   #pr值得初始化
    pr = zeros((c.shape[0],1),dtype = float)  #构造一个存放pr值得矩阵
    for i in range(c.shape[0]):
        pr[i] = float(1)/c.shape[0]
    #print pr,"\n==================================================="
    return pr
    
def pageRank(p,m,v):  #计算pageRank值
    while((v == p*dot(m,v) + (1-p)*v).all()==False):  #判断pr矩阵是否收敛,(v == p*dot(m,v) + (1-p)*v).all()判断前后的pr矩阵是否相等,若相等则停止循环
        #print v
        v = p*dot(m,v) + (1-p)*v
        #print (v == p*dot(m,v) + (1-p)*v).all()
    return v

if __name__=="__main__":
    M = graphMove(a)
    pr = firstPr(M)
    p = 0.8           #引入浏览当前网页的概率为p,假设p=0.8
    print pageRank(p,M,pr)  # 计算pr值  


相关文章
|
1月前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
166 0
|
1月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
1月前
|
数据采集 存储 JavaScript
解析Python爬虫中的Cookies和Session管理
Cookies与Session是Python爬虫中实现状态保持的核心。Cookies由服务器发送、客户端存储,用于标识用户;Session则通过唯一ID在服务端记录会话信息。二者协同实现登录模拟与数据持久化。
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
590 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
2月前
|
JSON 缓存 开发者
淘宝商品详情接口(item_get)企业级全解析:参数配置、签名机制与 Python 代码实战
本文详解淘宝开放平台taobao.item_get接口对接全流程,涵盖参数配置、MD5签名生成、Python企业级代码实现及高频问题排查,提供可落地的实战方案,助你高效稳定获取商品数据。
|
2月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
229 2
|
2月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
444 1
|
2月前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
271 1
贪心算法:部分背包问题深度解析
|
2月前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
673 0
|
2月前
|
机器学习/深度学习 JSON Java
Java调用Python的5种实用方案:从简单到进阶的全场景解析
在机器学习与大数据融合背景下,Java与Python协同开发成为企业常见需求。本文通过真实案例解析5种主流调用方案,涵盖脚本调用到微服务架构,助力开发者根据业务场景选择最优方案,提升开发效率与系统性能。
727 0

推荐镜像

更多