《机器学习实战》二分-kMeans算法(二分K均值聚类)

简介: =====================================================================《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记也包含一些其他python实现的机器学习算法                       ...

=====================================================================

《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记也包含一些其他python实现的机器学习算法
                                          算法实现均采用python

github 源码同步:https://github.com/Thinkgamer/Machine-Learning-With-Python

=====================================================================


Scikit-learn 实现的K-Means 算法请参考 :点击阅读

K-Means 均值算法请参考:点击阅读



首先二分-K均值是为了解决k-均值的用户自定义输入簇值k所延伸出来的自己判断k数目,其基本思路是:

为了得到k个簇,将所有点的集合分裂成两个簇,从这些簇中选取一个继续分裂,如此下去,直到产生k个簇。


伪代码:

初始化簇表,使之包含由所有的点组成的簇。
repeat
   从簇表中取出一个簇。
   {对选定的簇进行多次二分试验}
   for i=1 to 试验次数 do
       使用基本k均值,二分选定的簇。
   endfor
   从二分试验中选择具有最小误差的两个簇。
   将这两个簇添加到簇表中。
until 簇表中包含k个簇
比如要分成5个组,第一次分裂产生2个组,然后从这2个组中选一个目标函数产生的误差比较大的,分裂这个组产生2个,这样加上开始那1个就有3个组了,然后再从这3个组里选一个分裂,产生4个组,重复此过程,产生5个组。这算是一中基本求精的思想。二分k均值不太受初始化的困扰,因为它执行了多次二分试验并选取具有最小误差的试验结果,还因为每步只有两个质心。

优点与缺点

k均值简单并且可以用于各种数据类型,它相当有效,尽管常常多次运行。然后k均值并不适合所有的数据类型。它不能处理非球形簇,不同尺寸和不同密度的簇。对包含离群点(噪声点)的数据进行聚类时,k均值也有问题。

其实现的Python代码如下:

#encoding:utf-8
from numpy import *

def loadDataSet(filename):
	dataMat = []          #创建元祖
	fr = open(filename)
	for line in fr.readlines():
		curLine = line.strip().split("\t")
		fltLine = map(float,curLine) #使用map函数将curLine里的数全部转换为float型
		dataMat.append(fltLine)
	return dataMat

def distEclud(vecA,vecB):          #计算两个向量的欧式距离
	return sqrt(sum(power(vecA-vecB,2)))

def randCent(dataSet,k):            #位给定数据集构建一个包含k个随机质心的集合
	n = shape(dataSet)[1]   #shape函数此时返回的是dataSet元祖的列数
	centroids = mat(zeros((k,n)))       #mat函数创建k行n列的矩阵,centroids存放簇中心
	for j in range(n):
		minJ = min(dataSet[:,j])           #第j列的最小值
		rangeJ = float(max(dataSet[:,j]) - minJ)
		centroids[:,j] = minJ + rangeJ * random.rand(k,1)  #random.rand(k,1)产生shape(k,1)的矩阵
	return centroids

def kMeans(dataSet,k,disMeas = distEclud,createCent = randCent):
	m = shape(dataSet)[0] #shape函数此时返回的是dataSet元祖的行数
	clusterAssment = mat(zeros((m,2)))      #创建一个m行2列的矩阵,第一列存放索引值,第二列存放误差,误差用来评价聚类效果
	centroids = createCent(dataSet,k)  #创建k个质心,调用createCent()函数
	clusterChanged =True #标志变量,若为true则继续迭代
	print "质心位置更新过程变化:"
	while clusterChanged:
		clusterChanged = False
		for i in range(m):
			minDist = inf #inf为正无穷大
			minIndex = -1  #创建索引
			for j in range(k):
				#寻找最近的质心
				disJI = disMeas(centroids[j,:],dataSet[i,:]) #计算每个点到质心的欧氏距离
				if disJI< mindist="disJI" minindex="j" if="" clusterassment="" i="" minindex:="" clusterchanged="True" :="" print="" centroids="" for="" cent="" in="" range="" k="" ptsinclust="dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#通过数组过滤来获得给定簇的所有点" nonzero="" a="" eg="" b2="array([[True," false="" true="">(array([0, 0, 1]), array([0, 2, 0]))
				#print array(nonzero(b2))
				#=>[[0, 0, 1],[0, 2, 0]]
				centroids[cent,:] = mean(ptsInClust,axis=0)  #计算所有点的均值,选项axis=0表示沿矩阵的列方向进行均值计算
	return centroids,clusterAssment  #返回所有的类质心与点分配结果
	
def bikMeans(dataSet,k,disMeas = distEclud):
	m = shape(dataSet)[0] #shape函数此时返回的是dataSet元祖的行数
	clusterAssment = mat(zeros((m,2)))      #创建一个m行2列的矩阵,第一列存放索引值,第二列存放误差,误差用来评价聚类效果
	#创建一个初始簇
	centroid0 = mean(dataSet,axis=0).tolist()[0]
	centList = [centroid0]
	print centList
	print len(centList)
	for j in range(m):
		clusterAssment[j,1] = disMeas(mat(centroid0),dataSet[j,:])**2 #计算所有点的均值,选项axis=0表示沿矩阵的列方向进行均值计算
	while (len(centList)<k):
		lowestSSE = inf #inf正无穷大
		for i in range(len(centList)):
			#尝试划分每一簇
			ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
			centroidMat,splitClustAss = kMeans(ptsInCurrCluster,2,disMeas)
			
			sseSplit = sum(splitClustAss[:,1])
			sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
			print "sseSplit and notSplit:",sseSplit,sseNotSplit
			if (sseSplit + sseNotSplit)<lowestSSE:
				bestCentToSplit = i
				bestNewCents = centroidMat
				bestClustAss = splitClustAss.copy()
				lowestSSE = sseSplit + sseNotSplit
		#更新簇的分配结果
		bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
		bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
		
		print "the bestCentToSplit is :",bestCentToSplit
		print "the len of bestClustAss is:",len(bestClustAss)
		centList[bestCentToSplit] = bestNewCents[0,:]
		centList.append(bestNewCents[1,:])
		clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:] =bestClustAss
	return centList,clusterAssment
        #return mat(centList),clusterAssment

datMat = mat(loadDataSet('data.txt'))
myCentList,myNewAssment = bikMeans(datMat,2)
print "最终质心:\n",myCentList
print "索引值和均值:\n",myNewAssment
>

相关文章
|
15天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
58 4
|
1月前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
23天前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
57 5
|
17天前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
53 0
|
2月前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
24 1
|
20天前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
34 0
|
2月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
81 2
|
2月前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
95 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
54 5