几种常见的中文分词包的分析与比较

简介: 1:中文分词简介 2:Lucence的中文分词 3:庖丁分词简介 4:IK中文分词简介 一:中文分词简介     1:分词算法分类         -----基于字符串匹配的中文分词方法                eg:句子:我来自沈阳航空航天大学          ...

1:中文分词简介

2:Lucence的中文分词

3:庖丁分词简介

4:IK中文分词简介


一:中文分词简介

    1:分词算法分类

        -----基于字符串匹配的中文分词方法

               eg:句子:我来自沈阳航空航天大学

                       词典:沈阳  航空  航天  大学  沈阳航空航天大学

                       匹配字段:

                       匹配结果:

                选取词典中最长字段作为分词起始的最长步伐,可知最长为8

                首先在句子中以“我”为起点,数八个字“我来自沈阳航空航”在词典中没有匹配到,然后步长减一,为7

                然后数七个字“我来自沈阳航空”同样在字典中没有匹配到,步长减一,为6

                ........

                步长为1时依然没有匹配到,但是是单音节词了,所以存放在匹配结果中

                以此执行,下一次从“是”开始......

                所以最终的匹配结果是:我  来   自  沈阳航空航天大学  沈阳  航空  航天  大学

       ------基于理解的分词方法 

               类似于人工智能分词了,能够自动识别词语的意思,进行分词

        ------基于统计的分词方法

                这里有一篇关于基于统计分词的文章讲的相当详细,大家可以参考以下:http://www.cnblogs.com/xingyun/archive/2013/01/10/2854397.html

    2:两大难题

        ----歧义识别

        ----新词识别

    3:应用

        ----搜索引擎

        ----自然语言处理


二:Lucence的中文分词

        1:基于字符串匹配的分词

               ----paoding

               ----mmseg4j:MMseg算法

               ----IK:正向迭代最细粒度划分算法

         2:基于统计的分词

               ----imdict:采用隐马尔可夫模型


三:庖丁分词简介

        极具有高效性和可扩展性,采用完全的面向对象设计,构思先进

        主页:http://code.google.com/p/paoding

        优点:

               自定义词库,通过修改paoding-analysis.jar中的paoding-dic-home.properties文件中的“paoding.dic.home=dic”定义自己 的词库

               能够对未知的词汇进行合理的分析,分词效率高

        部署:

                下载地址:http://pan.baidu.com/s/1eQ88SZS

               

             1. 配置dic文件:

             修改paoding-analysis.jar中的paoding-dic-home.properties文件,将“#paoding.dic.home=dic”的注释去掉,并配置成自己dic文件的本地存放路径。eg:/home/hadoop/work/paoding-analysis-2.0.4-beta/dic

             2. 把Jar包导入到项目中:

                 将paoding-analysis.jar、commons-logging.jar、lucene-analyzers-2.2.0.jar和lucene-core-2.2.0.jar四个包导入到项目中,这时就可以在代码片段中使用庖丁解牛工具提供的中文分词技术

             3:代码实例

package tokens;

import java.io.IOException;
import java.io.StringReader;

import net.paoding.analysis.analyzer.PaodingAnalyzer;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.Token;
import org.apache.lucene.analysis.TokenStream;

public class tokens {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		String text = "本思想就是在分词的同时进行句法、语义分析, 利用句法信息和语义信息来进行词性标注, 以解决分词歧义现象。因为现有的语法知识、句法规则十分笼统、复杂, 基于语法和规则的分词法所能达到的精确度远远还不能令人满意, 目前这种分词系统还处在试验阶段。";
		//定义一个解析器
		Analyzer analyzer = new PaodingAnalyzer();
		
		//得到token序列的输出流
		TokenStream tokens = analyzer.tokenStream(text, new StringReader(text));
		try{
			Token t;
			while((t=tokens.next() ) !=null){
				System.out.println(t);
                                //System.out.println(t.termText())  输出单个词
			}
		}catch(IOException e){
			e.printStackTrace();
		}
	}

}


           4:分词结果
                

四:IK中文分词简介
        请参考之前的一篇博客:http://blog.csdn.net/gamer_gyt/article/details/47168877

相关文章
|
4月前
|
JSON 监控 API
在线网络PING接口检测服务器连通状态免费API教程
接口盒子提供免费PING检测API,可测试域名或IP的连通性与响应速度,支持指定地域节点,适用于服务器运维和网络监控。
|
机器学习/深度学习 算法 机器人
多代理强化学习综述:原理、算法与挑战
多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。每个代理都受其个体奖励驱动,采取行动以推进自身利益;在某些环境中,这些利益可能与其他代理的利益相冲突,从而产生复杂的群体动态。
804 5
|
SQL 关系型数据库 MySQL
【揭秘】MySQL binlog日志与GTID:如何让数据库备份恢复变得轻松简单?
【8月更文挑战第22天】MySQL的binlog日志记录数据变更,用于恢复、复制和点恢复;GTID为每笔事务分配唯一ID,简化复制和恢复流程。开启binlog和GTID后,可通过`mysqldump`进行逻辑备份,包含binlog位置信息,或用`xtrabackup`做物理备份。恢复时,使用`mysql`命令执行备份文件,或通过`innobackupex`恢复物理备份。GTID模式下的主从复制配置更简便。
1469 2
|
小程序 前端开发 测试技术
微信小程序|ssm基于微信小程序的高校课堂教学管理系统
微信小程序|ssm基于微信小程序的高校课堂教学管理系统
279 1
|
监控 算法 网络协议
Linux 系统性能调优技巧
【8月更文挑战第22天】
277 0
Linux 系统性能调优技巧
|
PyTorch 算法框架/工具
pytorch - swa_model模型保存的问题
pytorch - swa_model模型保存的问题
263 0
|
Java 微服务 Spring
SpringBoot+Vue+Spring Cloud Alibaba 实现大型电商系统【分布式微服务实现】
文章介绍了如何利用Spring Cloud Alibaba快速构建大型电商系统的分布式微服务,包括服务限流降级等主要功能的实现,并通过注解和配置简化了Spring Cloud应用的接入和搭建过程。
SpringBoot+Vue+Spring Cloud Alibaba 实现大型电商系统【分布式微服务实现】
|
JavaScript 前端开发 数据可视化
ECharts 雷达图案例001-自定义节点动画
使用ECharts创建自定义雷达图,通过JavaScript动态更新高亮和交互反馈,增强用户体验。关键步骤包括:开启动画效果,数据更新时保持图表状态,鼠标悬浮时动态高亮指标,优化动画性能。案例展示了ECharts在数据可视化中的灵活性和表现力。[查看完整案例](https://download.csdn.net/download/No_Name_Cao_Ni_Mei/89454380)。
944 0
 ECharts 雷达图案例001-自定义节点动画
|
存储 安全 Cloud Native
容器安全-镜像扫描
容器镜像安全至关重要,镜像扫描能检查镜像中的安全漏洞,防范云原生环境风险。72%客户拥有超过100个容器,安全问题日益凸显。两种扫描方案:定期扫描镜像注册表或集成到Pipeline中。此外,蜂巢提供全生命周期镜像扫描,包括漏洞、病毒检测,实时更新补丁数据库,并给出修复建议,助力企业保障容器安全。目前已服务100+头部客户。
|
Ubuntu Linux Python
Python的离线安装
Python的离线安装
1213 1