本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正
======================================================================
决策树的算法分析与Python代码实现请参考之前的一篇博客:K最近邻Python实现 接下来我主要演示怎么使用Scikit-Learn完成决策树算法的调用
sklearn.neighbors
: Nearest Neighbors
The sklearn.neighbors
module implements the k-nearest neighbors algorithm.
User guide: See the Nearest Neighbors section for further details.
neighbors.NearestNeighbors ([n_neighbors, ...]) |
Unsupervised learner for implementing neighbor searches. |
neighbors.KNeighborsClassifier ([...]) |
Classifier implementing the k-nearest neighbors vote. |
neighbors.RadiusNeighborsClassifier ([...]) |
Classifier implementing a vote among neighbors within a given radius |
neighbors.KNeighborsRegressor ([n_neighbors, ...]) |
Regression based on k-nearest neighbors. |
neighbors.RadiusNeighborsRegressor ([radius, ...]) |
Regression based on neighbors within a fixed radius. |
neighbors.NearestCentroid ([metric, ...]) |
Nearest centroid classifier. |
neighbors.BallTree |
BallTree for fast generalized N-point problems |
neighbors.KDTree |
KDTree for fast generalized N-point problems |
neighbors.LSHForest ([n_estimators, radius, ...]) |
Performs approximate nearest neighbor search using LSH forest. |
neighbors.DistanceMetric |
DistanceMetric class |
neighbors.KernelDensity ([bandwidth, ...]) |
Kernel Density Estimation |
neighbors.kneighbors_graph (X, n_neighbors[, ...]) |
Computes the (weighted) graph of k-Neighbors for points in X |
neighbors.radius_neighbors_graph (X, radius) |
Computes the (weighted) graph of Neighbors for points in X |
首先看一个简单的小例子:
Finding the Nearest Neighbors
sklearn.neighbors.NearestNeighbors具体说明查看:URL 在这只是将用到的加以注释
#coding:utf-8 ''' Created on 2016/4/24 @author: Gamer Think ''' #导入NearestNeighbor包 和 numpy from sklearn.neighbors import NearestNeighbors import numpy as np #定义一个数组 X = np.array([[-1,-1], [-2,-1], [-3,-2], [1,1], [2,1], [3,2] ]) """ NearestNeighbors用到的参数解释 n_neighbors=5,默认值为5,表示查询k个最近邻的数目 algorithm='auto',指定用于计算最近邻的算法,auto表示试图采用最适合的算法计算最近邻 fit(X)表示用X来训练算法 """ nbrs = NearestNeighbors(n_neighbors=3, algorithm="ball_tree").fit(X) #返回距离每个点k个最近的点和距离指数,indices可以理解为表示点的下标,distances为距离 distances, indices = nbrs.kneighbors(X) print indices print distances输出结果为:
执行
#输出的是求解n个最近邻点后的矩阵图,1表示是最近点,0表示不是最近点 print nbrs.kneighbors_graph(X).toarray()
KDTree and BallTree Classes#测试 KDTree
'''
leaf_size:切换到蛮力的点数。改变leaf_size不会影响查询结果,
但能显著影响查询和存储所需的存储构造树的速度。
需要存储树的规模约n_samples / leaf_size内存量。
为指定的leaf_size,叶节点是保证满足leaf_size <= n_points < = 2 * leaf_size,
除了在的情况下,n_samples < leaf_size。
metric:用于树的距离度量。默认'minkowski与P = 2(即欧氏度量)。
看到一个可用的度量的距离度量类的文档。
kd_tree.valid_metrics列举这是有效的基础指标。
'''
from sklearn.neighbors import KDTree
import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
kdt = KDTree(X,leaf_size=30,metric="euclidean")
print kdt.query(X, k=3, return_distance=False)
#测试 BallTree
from sklearn.neighbors import BallTree
import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
bt = BallTree(X,leaf_size=30,metric="euclidean")
print bt.query(X, k=3, return_distance=False)
其输出结果均为:
这是在小数据集的情况下并不能看到他们的差别,当数据集变大时,这种差别便显而易见了
使用scikit-learn的KNN算法进行分类的一个实例,使用数据集依旧是iris(鸢尾花)数据集
<span style="font-size:18px;">#coding:utf-8 ''' Created on 2016年4月24日 @author: Gamer Think ''' from sklearn.datasets import load_iris from sklearn import neighbors import sklearn #查看iris数据集 iris = load_iris() print iris knn = neighbors.KNeighborsClassifier() #训练数据集 knn.fit(iris.data, iris.target) #预测 predict = knn.predict([[0.1,0.2,0.3,0.4]]) print predict print iris.target_names[predict]</span>预测结果为:
[0] #第0类
['setosa'] #第0类对应花的名字
使用python实现的KNN算法进行分类的一个实例,使用数据集依旧是iris(鸢尾花)数据集,只不过将其保存在iris.txt文件中
<span style="font-size:18px;"> #-*- coding: UTF-8 -*- ''' Created on 2016/4/24 @author: Administrator ''' import csv #用于处理csv文件 import random #用于随机数 import math import operator # from sklearn import neighbors #加载数据集 def loadDataset(filename,split,trainingSet=[],testSet = []): with open(filename,"rb") as csvfile: lines = csv.reader(csvfile) dataset = list(lines) for x in range(len(dataset)-1): for y in range(4): dataset[x][y] = float(dataset[x][y]) if random.random()<split: trainingSet.append(dataset[x]) else: testSet.append(dataset[y]) #计算距离 def euclideanDistance(instance1,instance2,length): distance = 0 for x in range(length): distance = pow((instance1[x] - instance2[x]),2) return math.sqrt(distance) #返回K个最近邻 def getNeighbors(trainingSet,testInstance,k): distances = [] length = len(testInstance) -1 #计算每一个测试实例到训练集实例的距离 for x in range(len(trainingSet)): dist = euclideanDistance(testInstance, trainingSet[x], length) distances.append((trainingSet[x],dist)) #对所有的距离进行排序 distances.sort(key=operator.itemgetter(1)) neighbors = [] #返回k个最近邻 for x in range(k): neighbors.append(distances[x][0]) return neighbors #对k个近邻进行合并,返回value最大的key def getResponse(neighbors): classVotes = {} for x in range(len(neighbors)): response = neighbors[x][-1] if response in classVotes: classVotes[response]+=1 else: classVotes[response] = 1 #排序 sortedVotes = sorted(classVotes.iteritems(),key = operator.itemgetter(1),reverse =True) return sortedVotes[0][0] #计算准确率 def getAccuracy(testSet,predictions): correct = 0 for x in range(len(testSet)): if testSet[x][-1] == predictions[x]: correct+=1 return (correct/float(len(testSet))) * 100.0 def main(): trainingSet = [] #训练数据集 testSet = [] #测试数据集 split = 0.67 #分割的比例 loadDataset(r"iris.txt", split, trainingSet, testSet) print "Train set :" + repr(len(trainingSet)) print "Test set :" + repr(len(testSet)) predictions = [] k = 3 for x in range(len(testSet)): neighbors = getNeighbors(trainingSet, testSet[x], k) result = getResponse(neighbors) predictions.append(result) print ">predicted = " + repr(result) + ",actual = " + repr(testSet[x][-1]) accuracy = getAccuracy(testSet, predictions) print "Accuracy:" + repr(accuracy) + "%" if __name__ =="__main__": main() </span>
附iris.txt文件的内容
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor?
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica