Spark RDD编程(Python和Scala版本)

简介: Spark中的RDD就是一个不可变的分布式对象集合,是一种具有兼容性的基于内存的集群计算抽象方法,Spark则是这个方法的抽象。Spark的RDD操作分为转化操作(transformation)和行动操作(action),两者的区别在于:       a.

Spark中的RDD就是一个不可变的分布式对象集合,是一种具有兼容性的基于内存的集群计算抽象方法,Spark则是这个方法的抽象。

Spark的RDD操作分为转化操作(transformation)和行动操作(action),两者的区别在于:

       a.转化操作返回一个新的RDD对象

       b.行动操作则会对RDD产生一个计算结果,并把结果返回到驱动器程序中或者把结果存储到外部存储系统(如HDFS)

常见的转化操作有:map,filter,flatMap,sample,union,distinct,

                                    groupByKey,reduceByKey,sortByKey,join,cogroup,cartesian  ......

常见的行动操作有:reduce,collect,count,first,take,taksSample,

                                    saveAsTextFile,saveAsSequenceFile,countByKey,foreach ......

下面我们以实例说明Saprk的RDD编程

1:创建RDD

      有两种方式:读取外部数据集,以及在驱动器程序中对一个集合进行并行化

       python:

>>> nums =sc.parallelize([1,2,3,4])
>>> nums
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:423
>>> words = sc.textFile("file:///usr/local/hadoop/spark/README.md")
>>> words
file:///usr/local/hadoop/spark/README.md MapPartitionsRDD[2] at textFile at NativeMethodAccessorImpl.java:-2
>>> 
       Scala(两种方法):
val lines = sc.parallelize(List(1,2,3,4))
lines: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:27
val rdd = sc.makeRDD(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at makeRDD at <console>:27

2:map()函数 和 take()函数

      RDD.map(func),map接受一个函数作为参数,作用于RDD中的每个对象,并将返回结果作为结果RDD中对应的元素的值

      RDD.take(num),用于取回num个value,在这里结合map使用,方便查看值

Python:

>>> nums = sc.parallelize([1,2,3,4])
>>> for num in nums.take(4):
...     print num
... 
1
2
3
4
>>> new_nums = nums.map(lambda x: x*2)
>>> for new_num in new_nums.take(4):
...     print new_num
... 
2
4
6
8

Scala:

scala> val nums = sc.parallelize(List(1,2,3,4))
nums: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:27

scala>nums.take(4).foreach(println)
1
2
3
4

3:flatMap()函数

      RDD.flatMap(func),和map类似,只不过map返回的是一个个元素,而flatMap返回的则是一个返回值序列的迭代器

Python:

>>> string = sc.parallelize(["i love you"])
>>> new_str = string.flatMap(lambda str:str.split(" "))</span>
>>> for str in new_str.take(3):
...     print str
... 
i
love
you

Scala:

scala> val string = sc.parallelize(List("i love you"))
string: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[5] at parallelize at <console>:27

scala> val new_str = string.flatMap(line=>line.split(" "))
new_str: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[6] at flatMap at <console>:29

scala> new_str.take(3).foreach(println)
i
love
you

4:filter()函数和 first()函数

      RDD.filter(func),接受一个函数作为参数,并将RDD中满足该函数的元素放入新的RDD中返回

      RDD.first(),返回的第一个

Python:

>>> string = sc.parallelize(["i love you"])
>>> new_str = string.filter(lambda line : "you" in line)
>>> new_str.first()
'i love you'

Scala:

scala> val string = sc.parallelize(List("i love you"))
string: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[7] at parallelize at <console>:27
scala> string.first()
res3: String = i love you

scala> 
<pre name="code" class="java">scala> val string = sc.parallelize(List("I love you"))
scala> val new_str = string.filter(line =>line.contains("love"))
new_str: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[6] at filter at <console>:23

scala> new_str.foreach(println)
I love you

 

5:union()函数

      RDD1.union(RDD2),操作对象为两个RDD,返回一个新的RDD,转化操作可以操作任意数量的输入RDD

Python:

>>> num1 = sc.parallelize([1,2,3])
>>> num2 = sc.parallelize([4,5,6])
>>> num3 = num1.union(num2)
>>> for num in num3.take(6):
...     print num
... 
1
2
3
4
5
6

Scala:

scala> val num1 = sc.parallelize(List(1,2,3))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:27

scala> val num2 = sc.parallelize(List(4,5,6))
num2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:27

scala> val num3 = num1.union(num2)
mum3: org.apache.spark.rdd.RDD[Int] = UnionRDD[2] at union at <console>:31

scala> num3.count()
res1: Long = 6                                                                  

scala> num3.foreach(println)
3
1
2
4
5
6

6:count()函数和collect()函数

      RDD.count(),是统计RDD中元素的个数,返回的是一个整数

      EDD.collect(),用来收集数据,保存在一个新的数据结构中,用来持久化,需要注意的是collect不能用在大规模数据集上

Python:

>>> nums = sc.parallelize([1,2,3,4])
>>> nums.count()
[Stage 0:>                                                          (0 +[Stage 0:>                                                          (0 +[Stage 0:==============>  
 (1 +
 4       
>>> 
>>> new_nums = nums.collect()
>>> new_nums
[1, 2, 3, 4]
>>> 

Scala:

scala> val num1 = sc.parallelize(List(1,2,3))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:27

scala> num1.count()
res3: Long = 3

scala> val num2=num1.collect()
num2: Array[Int] = Array(1, 2, 3)

scala> num2
res4: Array[Int] = Array(1, 2, 3)

scala> 

7:伪集合操作

(1):RDD.distinct,去重,但其操作的开销大,因为它需要所有数据通过网络进行混洗

Python:
>>> nums1 = sc.parallelize([1,2,3,3])
>>> nums1.count()
4
>>> nums2=nums1.distinct()
>>> nums2.count()
3
>>>
Scala:
scala> val num1 = sc.parallelize(List(1,2,3,3))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:27

scala> val num2 = num1.distinct()
num2: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[7] at distinct at <console>:29

scala> num2.foreach(println)
2
3
1

(2):RDD1.intersection(RDD2),返回两个RDD中都有的元素,类似于集合中的交集

Python:
>>> nums_1=sc.parallelize([1,2,3,4,5])
>>> nums_2=sc.parallelize([3,4,5,6,7])
>>> nums_3=nums_1.intersection(nums_2)
>>> nums_3.count()
[Stage 7:>                                                          (0 +                                                                        3       
>>> for num in nums_3.take(3):
...     print num
...
3
4
5
>>>
Scala:
scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[9] at parallelize at <console>:27

scala> val num2 = sc.parallelize(List(3,4,5,6))
num2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:27

scala> val num3 = num1.intersection(num2)
num3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[16] at intersection at <console>:31

scala> num3.foreach(println)
4
3


(3):RDD1.subtract(RDD2),接受一个RDD作为参数,返回一个由只存在第一个RDD1而不存在与第二个RDD2中的所有元素组成的RDD

Python:
>>> nums_4 = nums_1.subtract(nums_2)
>>> nums_4.count()
2
>>> for num in nums_4.take(2):
...     print num
...
1
2
>>>
Scala:
scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[17] at parallelize at <console>:27

scala> val num2 = sc.parallelize(List(3,4,5,6))
num2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[18] at parallelize at <console>:27

scala> val num3 = num1.subtract(num2)
num3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[22] at subtract at <console>:31

scala> num3.foreach(println)
2
1


(4):RDD1.cartesian(RDD2),求笛卡尔积,求出所有可能的(a,b)对

Python:
>>> nums_5 = nums_1.cartesian(nums_2)
>>> nums_5
org.apache.spark.api.java.JavaPairRDD@5617ade8
>>> nums_5.first()
(1, 3)
>>>

Scala:

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[23] at parallelize at <console>:27

scala> val num2 = sc.parallelize(List(3,4,5,6))
num2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[24] at parallelize at <console>:27

scala> val num3 = num1.cartesian(num2)
num3: org.apache.spark.rdd.RDD[(Int, Int)] = CartesianRDD[25] at cartesian at <console>:31

scala> num3.foreach(println)
(1,3)
(1,5)
(1,6)
(1,4)
(2,3)
(2,4)
(3,3)
(2,5)
(2,6)
(3,4)
(3,6)
(4,3)
(3,5)
(4,5)
(4,4)
(4,6)

8:reduce()函数

  RDD.reduce(func),接受一个函数作为参数,操作两个RDD的元素类型的数据并返回一个同样类型的新元素

Python:

>>> nums=sc.parallelize([1,2,3,4,5,6])
>>> nums.reduce(lambda x,y:x+y)
21
>>> 
Scala:

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at parallelize at <console>:27

scala> val num2 = num1.reduce((x,y)=>x+y)
num2: Int = 10

9:aggregate()函数

aggregate()函数需要我们提供期待返回的类型的初始值,然后通过一个函数把RDD中的元素合并起来放入累加器,考虑到每个节点是在本地累加的,最终,还需要通过第二个函数把累加器兩兩合并

Python:

>>> nums = sc.parallelize([1,2,3,4])
>>> sumCount = nums.aggregate( (0,0),
... (lambda acc,value:(acc[0]+value,acc[1]+1)),
... (lambda acc1,acc2:(acc1[0]+acc2[0],acc1[1]+acc2[1])))
>>> sumCount[0]/float(sumCount[1])
2.5
>>>
Scala:

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[30] at parallelize at <console>:27

scala> val result = num1.aggregate((0,0))(
     | (acc,value) => (acc._1 + value,acc._2+1),
     | (acc1,acc2) =>(acc1._1+acc2._1,acc1._2+acc2._2)
     | )
result: (Int, Int) = (10,4)

scala> val avg = result._1/result._2.toDouble
avg: Double = 2.5

scala> 

10:top()函数和 foreach()函数

        RDD.top(num),从RDD中返回前边的num个元素

Python:

>>> nums = sc.parallelize([1,2,3,4])
>>> new_nums = nums.top(3)
>>> new_nums
[4, 3, 2]
Scala:
scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[31] at parallelize at <console>:27

scala> num1.top(2)
res10: Array[Int] = Array(4, 3)

scala> 
        RDD.foreach(func),对RDD中的每个元素使用给定的函数

Python:

>>> nums = sc.parallelize([1,2,3])
>>> def add(x):
...     print "\n","x+2:",x+2
... 
>>> nums.foreach(add)

x+2: 5

x+2: 3

x+2: 4

Scala:

scala> def add(x:Int)={
     |  println (x+2)
     | }
add: (x: Int)Unit

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[36] at parallelize at <console>:27

scala> num1.foreach(add)
6
5
3
4

11:sample()函数 和 takeSample()函数

            sample(withReplacement,traction,[send]):对RDD采样以及是否转换

Python:

>>> nums = sc.parallelize([1,2,3,4,5,6,7])
>>> new_nums = nums.sample(False,0.5)
>>> new_nums
PythonRDD[106] at RDD at PythonRDD.scala:43
>>> new_nums.count()
5
>>> for n in new_nums.take(5):
...     print n
... 
1
3
5
6
7
Scala:

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[37] at parallelize at <console>:27

scala> val num2 = num1.sample(false,0.5)
num2: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[38] at sample at <console>:29

scala> num2.foreach(println)
2
3
          RDD.takeSample( withReplacement,num,[send]),从RDD中返回任意一些元素

Python:

>>> nums = sc.parallelize([1,2,3,4,5,6,7])
>>> new_nums= nums.takeSample(False,5)
>>> new_nums
[5, 3, 4, 6, 7]

Scala:

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[39] at parallelize at <console>:27

scala> val num2 = num1.takeSample(false,2)
num2: Array[Int] = Array(3, 4)

12:persist  和 unpersist

        RDD.persist(),不带参数默认把数据以序列化的形式缓存在JVM的堆空间中

        RDD.unpersist(),手动把持久化的RDD从内存中删除

>>> nums = sc.parallelize([1,2,3,4,5,6,7])
>>> new_nums = nums.persist()
>>> new_nums
ParallelCollectionRDD[124] at parallelize at PythonRDD.scala:423
>>> new_nums.unpersist()
ParallelCollectionRDD[124] at parallelize at PythonRDD.scala:423
>>> 
Scala:

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[41] at parallelize at <console>:27

scala> val num2 = num1.persist()
num2: num1.type = ParallelCollectionRDD[41] at parallelize at <console>:27

scala> num2.foreach(println)
3
1
2
4

scala> num2.unpersist()
res17: num2.type = ParallelCollectionRDD[41] at parallelize at <console>:27


相关文章
|
1天前
|
人工智能 数据挖掘 Serverless
探索Python编程:从基础到实战
【10月更文挑战第2天】本文将带你走进Python的世界,了解它的基本语法、数据结构、函数等核心概念,并通过实例演示如何应用这些知识解决实际问题。无论你是编程新手还是有一定经验的开发者,都能在这篇文章中找到有价值的内容。让我们一起开启Python编程之旅吧!
|
1天前
|
机器学习/深度学习 存储 数据挖掘
探索Python编程之美:从基础到进阶的旅程
【10月更文挑战第2天】本文旨在通过浅显易懂的方式,带领读者走进Python编程的世界。我们将从Python的基础语法开始,逐步深入到面向对象编程、异常处理等高级主题,最后探讨如何将Python应用于实际项目中。无论你是编程新手还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和实用的技巧。
|
1天前
|
索引 Python
Python学习笔记编程小哥令狐~持续更新、、、(上)
Python学习笔记编程小哥令狐~持续更新、、、(上)
13 2
|
1天前
|
存储 Python
【免费分享编程笔记】Python学习笔记(三)
【免费分享编程笔记】Python学习笔记(三)
11 1
|
1天前
|
存储 Python
Python学习笔记编程小哥令狐~持续更新、、、 (下)
Python学习笔记编程小哥令狐~持续更新、、、 (下)
11 1
|
1天前
|
存储 Python
【免费分享编程笔记】Python学习笔记(二)
【免费分享编程笔记】Python学习笔记(二)
10 0
|
1天前
|
索引 Python
【免费分享编程笔记】Python学习笔记(一)
【免费分享编程笔记】Python学习笔记(一)
11 0
|
3月前
|
机器学习/深度学习 分布式计算 算法
Spark快速大数据分析PDF下载读书分享推荐
《Spark快速大数据分析》适合初学者,聚焦Spark实用技巧,同时深入核心概念。作者团队来自Databricks,书中详述Spark 3.0新特性,结合机器学习展示大数据分析。Spark是大数据分析的首选工具,本书助你驾驭这一利器。[PDF下载链接][1]。 ![Spark Book Cover][2] [1]: https://zhangfeidezhu.com/?p=345 [2]: https://i-blog.csdnimg.cn/direct/6b851489ad1944548602766ea9d62136.png#pic_center
134 1
Spark快速大数据分析PDF下载读书分享推荐