《完美软件》笔记3:测试无法做的事

简介:

image

“不用害怕完美--那是永远无法达到的。”

----萨尔瓦多。达利,西班牙超现实主义画家(1904~1989)

 

收集有关程序在使用时到底能做什么的信息,是人们所说的“测试”的一种形式。

  • 》信息未必有助于降低风险
  • 》也许我们不会使用那些花钱得到的信息
  • 》决定是感性的而不是理性的
  • 》不良的测试也许比不测试更糟
  • 》产品可能尚未准备好接受测试

小结:如果存在任何原因导致不需要使用测试结果提供的信息,就没有必要进行测试。而且,如果测试将要得到的信息是不相关的或者不可靠的,最好就不要使用它,那么一开始也就没有必要花钱进行测试。

常见错误:

  • 1、不尊重测试人员
  • 2、过度尊重测试人员--让测试员做决定
  • 3、让测试员当替罪羊
  • 4、不使用通过测试或者其他渠道获得的信息
  • 5、做出感性的而不是理发的决定
  • 6、不对测试数据的质量进行评估
  • 7、在未做好充分准备的情况下进行测试
  • 8、未能直辖市好测试和项目其他工作的关系
  • 9、催促测试人员
  • 10、不坚持要求经理们付出应有的勤奋
  • 11、只是由于别人的决定和你的不同就认为他们是非理性的:很多看似非理性的决定在不同的价值取向下是理性的。记住,这一原则可以避免在经理、测试员、开发员之间的许多冲突。
  • 12、未能认识到测试产生的信息有多种用途














本文转自DavyYew 51CTO博客,原文链接:http://blog.51cto.com/davyyew/280465 ,如需转载请自行联系原作者


相关文章
|
1月前
|
测试技术 开发者 Python
自动化测试之美:从零构建你的软件质量防线
【10月更文挑战第34天】在数字化时代的浪潮中,软件成为我们生活和工作不可或缺的一部分。然而,随着软件复杂性的增加,如何保证其质量和稳定性成为开发者面临的一大挑战。自动化测试,作为现代软件开发过程中的关键实践,不仅提高了测试效率,还确保了软件产品的质量。本文将深入浅出地介绍自动化测试的概念、重要性以及实施步骤,带领读者从零基础开始,一步步构建起属于自己的软件质量防线。通过具体实例,我们将探索如何有效地设计和执行自动化测试脚本,最终实现软件开发流程的优化和产品质量的提升。无论你是软件开发新手,还是希望提高项目质量的资深开发者,这篇文章都将为你提供宝贵的指导和启示。
|
1月前
|
jenkins 测试技术 持续交付
自动化测试框架的构建与优化:提升软件交付效率的关键####
本文深入探讨了自动化测试框架的核心价值,通过对比传统手工测试方法的局限性,揭示了自动化测试在现代软件开发生命周期中的重要性。不同于常规摘要仅概述内容,本部分强调了自动化测试如何显著提高测试覆盖率、缩短测试周期、降低人力成本,并促进持续集成/持续部署(CI/CD)流程的实施,最终实现软件质量和开发效率的双重飞跃。通过具体案例分析,展示了从零开始构建自动化测试框架的策略与最佳实践,包括选择合适的工具、设计高效的测试用例结构、以及如何进行性能调优等关键步骤。此外,还讨论了在实施过程中可能遇到的挑战及应对策略,为读者提供了一套可操作的优化指南。 ####
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
自动化测试的新篇章:利用AI提升软件质量
【10月更文挑战第35天】在软件开发的海洋中,自动化测试犹如一艘救生艇,它帮助团队确保产品质量,同时减少人为错误。本文将探索如何通过集成人工智能(AI)技术,使自动化测试更加智能化,从而提升软件测试的效率和准确性。我们将从AI在测试用例生成、测试执行和结果分析中的应用出发,深入讨论AI如何重塑软件测试领域,并配以实际代码示例来说明这些概念。
63 3
|
2月前
|
敏捷开发 监控 jenkins
自动化测试之美:打造高效的软件质量保障体系
【10月更文挑战第20天】在软件开发的海洋中,自动化测试如同一艘精准的导航船,引领项目避开错误的礁石,驶向质量的彼岸。本文将扬帆起航,探索如何构建和实施一个高效的自动化测试体系,确保软件产品的稳定性和可靠性。我们将从测试策略的制定、工具的选择、脚本的编写,到持续集成的实施,一步步描绘出自动化测试的蓝图,让读者能够掌握这一技术的关键要素,并在自己的项目中加以应用。
38 5
|
2月前
|
Java 测试技术 持续交付
探索自动化测试的奥秘:提升软件质量的关键
【10月更文挑战第20天】 在当今快速发展的软件行业中,自动化测试已成为确保产品质量和加速开发周期的重要工具。本文将深入探讨自动化测试的核心概念、实施策略及其对软件开发生命周期的影响,旨在为读者提供一种全面理解自动化测试的视角,并展示如何有效地将其应用于实际项目中以提高软件质量和效率。
29 2
|
2月前
|
机器学习/深度学习 弹性计算 自然语言处理
前端大模型应用笔记(二):最新llama3.2小参数版本1B的古董机测试 - 支持128K上下文,表现优异,和移动端更配
llama3.1支持128K上下文,6万字+输入,适用于多种场景。模型能力超出预期,但处理中文时需加中英翻译。测试显示,其英文支持较好,中文则需改进。llama3.2 1B参数量小,适合移动端和资源受限环境,可在阿里云2vCPU和4G ECS上运行。
136 1
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
80 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
2月前
|
机器学习/深度学习 并行计算 数据可视化
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
178 0
|
2月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
360 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
2月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
69 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)