Android应用程序消息处理机制(Looper、Handler)分析(6)

简介:

3. 消息的处理

        前面在分析消息循环时,说到应用程序的主线程是在Looper类的loop成员函数中进行消息循环过程的,这个函数定义在frameworks/base/core/java/android/os/Looper.java文件中:

  1. public class Looper {  
  2.     ......  
  3.   
  4.     public static final void loop() {  
  5.         Looper me = myLooper();  
  6.         MessageQueue queue = me.mQueue;  
  7.   
  8.         ......  
  9.   
  10.         while (true) {  
  11.             Message msg = queue.next(); // might block  
  12.             ......  
  13.   
  14.             if (msg != null) {  
  15.                 if (msg.target == null) {  
  16.                     // No target is a magic identifier for the quit message.  
  17.                     return;  
  18.                 }  
  19.   
  20.                 ......  
  21.   
  22.                 msg.target.dispatchMessage(msg);  
  23.                   
  24.                 ......  
  25.   
  26.                 msg.recycle();  
  27.             }  
  28.         }  
  29.     }  
  30.   
  31.     ......  
  32. }  

它从消息队列中获得消息对象msg后,就会调用它的target成员变量的dispatchMessage函数来处理这个消息。在前面分析消息的发送时说过,这个消息对象msg的成员变量target是在发送消息的时候设置好的,一般就通过哪个Handler来发送消息,就通过哪个Handler来处理消息。

 

        我们继续以前面分析消息的发送时所举的例子来分析消息的处理过程。前面说到,在Android应用程序启动过程源代码分析这篇文章的Step 30中,ActivityManagerService通过调用ApplicationThread类的scheduleLaunchActivity函数通知应用程序,它可以加载应用程序的默认Activity了,而ApplicationThread类的scheduleLaunchActivity函数最终把这个请求封装成一个消息,然后通过ActivityThread类的成员变量mH来把这个消息加入到应用程序的消息队列中去。现在要对这个消息进行处理了,于是就会调用H类的dispatchMessage函数进行处理。

        H类没有实现自己的dispatchMessage函数,但是它继承了父类Handler的dispatchMessage函数,这个函数定义在frameworks/base/core/java/android/os/ Handler.java文件中:

  1. public class Handler {  
  2.     ......  
  3.   
  4.     public void dispatchMessage(Message msg) {  
  5.         if (msg.callback != null) {  
  6.             handleCallback(msg);  
  7.         } else {  
  8.             if (mCallback != null) {  
  9.                 if (mCallback.handleMessage(msg)) {  
  10.                     return;  
  11.                 }  
  12.             }  
  13.             handleMessage(msg);  
  14.         }  
  15.     }  
  16.   
  17.     ......  
  18. }  

   这里的消息对象msg的callback成员变量和Handler类的mCallBack成员变量一般都为null,于是,就会调用Handler类的handleMessage函数来处理这个消息,由于H类在继承Handler类时,重写了handleMessage函数,因此,这里调用的实际上是H类的handleMessage函数,这个函数定义在frameworks/base/core/java/android/app/ActivityThread.java文件中:

  1. public final class ActivityThread {    
  2.     
  3.     ......    
  4.     
  5.     private final class H extends Handler {    
  6.     
  7.         ......    
  8.     
  9.         public void handleMessage(Message msg) {    
  10.             ......    
  11.             switch (msg.what) {    
  12.             case LAUNCH_ACTIVITY: {    
  13.                 ActivityClientRecord r = (ActivityClientRecord)msg.obj;    
  14.     
  15.                 r.packageInfo = getPackageInfoNoCheck(    
  16.                     r.activityInfo.applicationInfo);    
  17.                 handleLaunchActivity(r, null);    
  18.             } break;    
  19.             ......    
  20.             }    
  21.     
  22.         ......    
  23.     
  24.     }    
  25.     
  26.     ......    
  27. }    

 因为前面在分析消息的发送时所举的例子中,发送的消息的类型为H.LAUNCH_ACTIVITY,因此,这里就会调用ActivityThread类的handleLaunchActivity函数来真正地处理这个消息了,后面的具体过程就可以参考Android应用程序启动过程源代码分析这篇文章了。

 

         至此,我们就从消息循环、消息发送和消息处理三个部分分析完Android应用程序的消息处理机制了,为了更深理解,这里我们对其中的一些要点作一个总结:

         A. Android应用程序的消息处理机制由消息循环、消息发送和消息处理三个部分组成的。

         B. Android应用程序的主线程在进入消息循环过程前,会在内部创建一个Linux管道(Pipe),这个管道的作用是使得Android应用程序主线程在消息队列为空时可以进入空闲等待状态,并且使得当应用程序的消息队列有消息需要处理时唤醒应用程序的主线程。

         C. Android应用程序的主线程进入空闲等待状态的方式实际上就是在管道的读端等待管道中有新的内容可读,具体来说就是是通过Linux系统的Epoll机制中的epoll_wait函数进行的。

         D. 当往Android应用程序的消息队列中加入新的消息时,会同时往管道中的写端写入内容,通过这种方式就可以唤醒正在等待消息到来的应用程序主线程。

         E. 当应用程序主线程在进入空闲等待前,会认为当前线程处理空闲状态,于是就会调用那些已经注册了的IdleHandler接口,使得应用程序有机会在空闲的时候处理一些事情。1





本文转自 Luoshengyang 51CTO博客,原文链接:http://blog.51cto.com/shyluo/966602,如需转载请自行联系原作者
目录
相关文章
|
1天前
|
移动开发 Java Android开发
构建高效Android应用:采用Kotlin协程优化网络请求
【4月更文挑战第24天】 在移动开发领域,尤其是对于Android平台而言,网络请求是一个不可或缺的功能。然而,随着用户对应用响应速度和稳定性要求的不断提高,传统的异步处理方式如回调地狱和RxJava已逐渐显示出局限性。本文将探讨如何利用Kotlin协程来简化异步代码,提升网络请求的效率和可读性。我们将深入分析协程的原理,并通过一个实际案例展示如何在Android应用中集成和优化网络请求。
|
1天前
|
调度 Android开发 开发者
构建高效Android应用:探究Kotlin协程的优势与实践
【4月更文挑战第24天】随着移动开发技术的不断演进,提升应用性能和用户体验已成为开发者的核心任务。在Android平台上,Kotlin语言凭借其简洁性和功能性成为主流选择之一。特别是Kotlin的协程功能,它为异步编程提供了一种轻量级的解决方案,使得处理并发任务更加高效和简洁。本文将深入探讨Kotlin协程在Android开发中的应用,通过实际案例分析协程如何优化应用性能,以及如何在项目中实现协程。
|
2天前
|
存储 缓存 安全
Android系统 应用存储路径与权限
Android系统 应用存储路径与权限
6 0
Android系统 应用存储路径与权限
|
2天前
|
存储 安全 Android开发
Android系统 自定义系统和应用权限
Android系统 自定义系统和应用权限
16 0
|
2天前
|
存储 Java Android开发
Android系统 设置第三方应用为默认Launcher实现和原理分析
Android系统 设置第三方应用为默认Launcher实现和原理分析
16 0
|
2天前
|
存储 Java Linux
Android系统获取event事件回调等几种实现和原理分析
Android系统获取event事件回调等几种实现和原理分析
20 0
|
7天前
|
缓存 移动开发 Android开发
构建高效Android应用:从优化用户体验到提升性能表现
【4月更文挑战第18天】 在移动开发的世界中,打造一个既快速又流畅的Android应用并非易事。本文深入探讨了如何通过一系列创新的技术策略来提升应用性能和用户体验。我们将从用户界面(UI)设计的简约性原则出发,探索响应式布局和Material Design的实践,再深入剖析后台任务处理、内存管理和电池寿命优化的技巧。此外,文中还将讨论最新的Android Jetpack组件如何帮助开发者更高效地构建高质量的应用。此内容不仅适合经验丰富的开发者深化理解,也适合初学者构建起对Android高效开发的基础认识。
5 0
|
7天前
|
移动开发 Android开发 开发者
构建高效Android应用:采用Kotlin进行内存优化的策略
【4月更文挑战第18天】 在移动开发领域,性能优化一直是开发者关注的焦点。特别是对于Android应用而言,由于设备和版本的多样性,确保应用流畅运行且占用资源少是一大挑战。本文将探讨使用Kotlin语言开发Android应用时,如何通过内存优化来提升应用性能。我们将从减少不必要的对象创建、合理使用数据结构、避免内存泄漏等方面入手,提供实用的代码示例和最佳实践,帮助开发者构建更加高效的Android应用。
11 0
|
9天前
|
缓存 移动开发 Java
构建高效的Android应用:内存优化策略
【4月更文挑战第16天】 在移动开发领域,尤其是针对资源有限的Android设备,内存优化是提升应用性能和用户体验的关键因素。本文将深入探讨Android应用的内存管理机制,分析常见的内存泄漏问题,并提出一系列实用的内存优化技巧。通过这些策略的实施,开发者可以显著减少应用的内存占用,避免不必要的后台服务,以及提高垃圾回收效率,从而延长设备的电池寿命并确保应用的流畅运行。
|
11天前
|
搜索推荐 开发工具 Android开发
安卓即时应用(Instant Apps)开发指南
【4月更文挑战第14天】Android Instant Apps让用户体验部分应用功能而无需完整下载。开发者需将应用拆分成模块,基于已上线的基础应用构建。使用Android Studio的Instant Apps Feature Library定义模块特性,优化代码与资源以减小模块大小,同步管理即时应用和基础应用的版本。经过测试,可发布至Google Play Console,提升用户便利性,创造新获客机会。