The Changing Face of Business Intelligence(正在改变中的BI的脸)二

简介:
文章太长了,只能截成两段来发出去了

Focus on Business Analysts
关注业务分析师
Analytics are an important aspect of business measurement and performance management. The analysts, however, are even more important than the analytics. It is analysts – the people who perform. analysis – who find meaning in the data . These are the people who explore cause-effect relationships and who guide decision-making processes. It is they who will lead the charge to reshape decision making in business.
分析是企业 衡量和绩效管理 中很重要的一个方面。分析师甚至比分析更为重要。这是分析师- 谁的人进行分析- 谁找到意义的数据。这些人谁探讨因果关系,谁指导决策过程。这是谁,他们将领导负责重塑商业决策。
The shift to analyst focus is already underway. It goes hand-in-hand with the focus on business analytics. The goals of technology providers – user focused, ease of use, desktop based, agile, visual and accessible – all recognize and respond to the important role of business analysts.
 
    向分析师倾斜的转变已经在展开了。不言而喻同为重点也发生在业务分析。技术提供商的目标是- 用户集中,易于使用,基于桌面的,敏捷,可视的并且可访问- 所有认识和应对方面发挥重要作用的业务分析师。
But it takes more than technology. To achieve the right focus we must first answer the question:Where are the Business Analysts? Bear in mind that analyst focus is not reserved for those with business analyst job titles. Every manager in a business is a de facto business analyst. The controller performing cash flow analysis, the compliance officer performing risk analysis and the marketing manager analyzing campaign effectiveness all have some business analyst roles and responsibilities. These people are analytic professionals, though they may not be professional analysts.
 
    但这需要的不仅是技术。为了达到正确的关注,我们必须首先回答这样一个问题:业务分析师在哪里?记住,分析师重点不仅仅是拥有业务分析师职称的人。每名企业里的经理事实上就是业务分析员。例如控制员执行的现金流量分析,遵守干事进行风险分析和营销经理分析广告系列的效果都有一些业务分析师的作用和责任。这些人就是分析专家,尽管他们可能不是专业分析师。
Focus on Business
关注业务
The final piece in the BI evolution puzzle is focus on business. The concentration here needs to be much deeper than the lip-service to business alignment. BI and business need to be consciously and actively aligned in three dimensions: management, motivation and measurement. Figure 3 illustrates this multidimensional view of analytic alignment – a business-oriented BI framework .
BI 发展的最后一个困难是要关注业务。集中在这里需要更加深入服务,以业务融合。BI 和企业需要有意识的、积极关注以下三个方面:管理,激励和度量。
图3 说明了这多方面的观点分析视图- 以商业导向的为主的BI 框架。
  
The management dimension is used to achieve functional alignment. It describeswhat is managed and measured in analytic systems – the functional domains that are areas of management responsibility. The diagram in Figure 3 shows eight domains that are common to virtually every business. Don’t hesitate to adapt and customize these to be specific to your business. Those in the insurance industry, for example, might choose to show claims, actuarial and underwriting as items in the management dimension. Higher education may show education, research and student servi
ces. Retail might include merchandising, customer relations, supplier relations, etc.
     管理维度被用来实现功能定位。它描述了在分析系统中需要管理和测量东西。
图中的图3 显示8 个领域的共同几乎所有的业务。不要犹豫去适应和定制这些是特定于您的业务。那些在保险业,例如,可以选择显示索赔,精算和承销的项目在管理层面。高等教育可能显示的教育,研究和学生服务。零售业可能包括销售,客户关系,供应商关系等
The motivation dimension supports goal alignment. It describeswhy we measure and manage – the criteria used to determine quality of management. The diagram illustrates four criteria: performance, compliance, profit and risk. This dimension may need to be tailored to the nature of your enterprise. Public sector organizations, for example, may need to include public service and public perception. Higher education institutions will certainly want to include accreditation.
    动力方面支持的目标一致。它说明为什么我们衡量和管理- 使用的标准,以确定管理的质量。该图显示四个标准:性能,遵守,利润和风险。这一方面可能需要进行调整,以适应的性质,您的企业。公共部门组织,例如,可能需要包括公共服务和公众的看法。高等教育机构将肯定要包括认可。
The measurement dimension connects management and motivation with analytics. It describes thehow of measurement-based management. The framework shows six elements that apply to enterprises of all types and in virtually every industry. A measure is a single, quantitative data value coupled with data describing the thing that is quantified and the time of measurement. A metric is a system of measures with sufficient context to provide information through sorting, grouping, filtering, summarization, etc. References are the comparative values that give meaning to metrics – the basis by which metric values can be evaluated as “good” or “bad.” References include thresholds, targets, previous values, etc. A trend is a specific kind of reference in which a series of metric values is compared to observe behavior. over time. Indicators are metrics used to evaluate performance against tactical and operational goals. An index is a composite of multiple indicators that is used to evaluate performance against strategic goals.
测量尺寸连接管理和动机与分析。它描述了如何测量为基础的管理。该框架表明六项内容,适用于各类企业,并在几乎每一个行业。这一措施是一个单一的,量化的数据值加上数据描述的事情是量化和测量的时间。一个数据是一个系统的措施,提供充分的背景资料,通过整理,分类,筛选,总结,参考文献等是比较值,使指标的意义- 根据该指标值可评为“良好”或“坏的。 “参考包括起点,目标,以往的价值观念等的趋势是一种特定的范围,其中的一系列指标值进行比较,观察一段时间的行为。指标是衡量标准来评价业绩,战术和作战目标。该指数是一个综合的多指标,用来评价业绩的战略目标。
The three-dimensional approach to analytics is a powerful alignment tool. As illustrated in Figure 3, the framework contains 192 cells. Each cell represents analytic opportunities. When used to align, prioritize and identify analytic needs, the framework places the right emphasis on thebusiness part of business intelligence.
三维分析方法是一个功能强大的调整工具。正如图3 ,该框架包含192 个单元格。每个单元格都代表不同的分析机会。当用来调整,确定优先次序和分析需求,框架中正确位置应该强调商业智能 的业务部分。
In Conclusion
Over the coming several months, business intelligence will experience change that will have broad, deep and lasting impact. Changing focus to simultaneously concentrate on business analytics, business analysts and business itself is significant. Ultimately, it will change the way that we think about business and the way that business decisions are made. When thoughtful analysis replaces gut feel, conventional wisdom, tribal knowledge and “the way we’ve always done it,” then we will realize the true potential of business analytics and enter into the next generation of business intelligence. We will truly enable business capacity to reason, plan, predict, solve problems, think abstractly, comprehend, innovate and learn. We will finally come full circle to realize Howard Dresner’s BI vision.
在未来的几个月里,商业智能将经历的变化,有广泛,深入和持久的影响。改变的同时,重点集中在商业分析,业务分析和业务本身是重要的。最终,这将改变,我们认为有关商业和商务的方式作出决定。当深思熟虑的分析代替肠认为,传统的智慧,知识和部落“的方式我们一直这样做” ,那么我们将实现真正的潜力,商业分析,进入下一代的商业智能。我们将真正使企业的能力,因此,计划,预测,解决问题,认为抽象,理解,创新和学习 。我们将充分循环终于实现霍华德Dresner 的BI 视野。
If you found this article helpful and would like to receive the latest insights each week from the experts featured on the BeyeNETWORK, pleasesubscribe to the BeyeNETWORK Newsletter .
如果您发现该文章对您有帮助,并希望获得在BeyeNETWORK 每星期由专家精选的最新的见解,请订阅BeyeNETWORK 新闻列表。
Recent articles by Dave Wells
A Systems View of Business Analytics, Part 3 
A Systems View of Business Analytics, Part 2 
A Systems View of Business Analytics, Part 1 
Dave Wells -
Dave is a consultant, mentor and teacher in the field of business intelligence (BI). He brings to every consulting endeavor a unique and balanced perspective about the relationships of business and technology. This perspective – refined through a career of more than 35 years that encompassed both business and technical roles – helps to align business and information technology in the most effective ways.
Dave 是一名在商务智能(BI )领域的专职顾问,导师和教师。他带来了每一个独特的咨询工作和在业务和技术关系中如何平衡的角度。通过了35 年的职业生涯所精炼的观点有助于以更有效的办法去协调业务和信息技术。
Editor's note: More articles, resources, news and events are available inDave Wells' BeyeNETWORK.com expert channel . Be sure to visit today!





本文转自baoqiangwang51CTO博客,原文链接:http://blog.51cto.com/baoqiangwang/309660 ,如需转载请自行联系原作者
相关文章
|
8月前
|
编解码
Google Earth Engine(GEE)——监督分类出现ConfusionMatrix (Error) User memory limit exceeded.解决方案
Google Earth Engine(GEE)——监督分类出现ConfusionMatrix (Error) User memory limit exceeded.解决方案
237 0
|
机器学习/深度学习 自然语言处理 达摩院
Rethinking Information Extraction :信息抽取的现状与未来
​ ##引言 从计算到感知再到认知是业内学者都认同的人工智能技术发展路径。机器具备认知智能,进而实现推理、规划乃至联想和创作,在一定程度上需要一个充满知识的大脑,而信息抽取是获取知识的重要途径之一。 在具体的业务场景如搜索推荐,结构化的领域知识有利于实现细粒度文本理解,有利于实现精准的复杂问答,有利于
5623 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
Hugging Face 论文平台 Daily Papers 功能全解析
【9月更文挑战第23天】Hugging Face 是一个专注于自然语言处理领域的开源机器学习平台。其推出的 Daily Papers 页面旨在帮助开发者和研究人员跟踪 AI 领域的最新进展,展示经精心挑选的高质量研究论文,并提供个性化推荐、互动交流、搜索、分类浏览及邮件提醒等功能,促进学术合作与知识共享。
103 0
|
8月前
|
机器学习/深度学习 存储 自然语言处理
【威胁情报挖掘-论文阅读】学习图表绘制 基于多实例学习的网络行为提取 SeqMask: Behavior Extraction Over Cyber Threat Intelligence
【威胁情报挖掘-论文阅读】学习图表绘制 基于多实例学习的网络行为提取 SeqMask: Behavior Extraction Over Cyber Threat Intelligence
84 0
|
机器学习/深度学习 存储 自然语言处理
Bi-SimCut: A Simple Strategy for Boosting Neural Machine Translation 论文笔记
Bi-SimCut: A Simple Strategy for Boosting Neural Machine Translation 论文笔记
|
编解码 vr&ar 数据安全/隐私保护
苹果 Face ID 开放《iPhone X ARKit Face Tracking》
本文章来自 腾讯Bugly 《iPhone X ARKit Face Tracking》 iPhone X前置深度摄像头带来了Animoji和face ID,同时也将3D Face Tracking的接口开放给了开发者。有幸去Cupertino苹果总部参加了iPhone X的封闭开发,本文主要分享一下iPhone X上使用ARKit进行人脸追踪及3D建模的相关内容。
615 0
苹果 Face ID 开放《iPhone X ARKit Face Tracking》
|
数据可视化
hands-on-data-analysis 第二单元 第四节数据可视化
hands-on-data-analysis 第二单元 第四节数据可视化
153 0
hands-on-data-analysis 第二单元 第四节数据可视化
|
索引 Python
hands-on-data-analysis 第二单元 2,3节
数据合并——concat横向合并
128 0
|
数据挖掘
DIKW体系(Data-Information-Knowlege-Wisdom)
DIKW体系(Data-Information-Knowlege-Wisdom)
563 1
DIKW体系(Data-Information-Knowlege-Wisdom)
|
编解码 数据挖掘 Java
Google Earth Engine ——数据全解析专辑(Canada AAFC Annual Crop Inventory)
Google Earth Engine ——数据全解析专辑(Canada AAFC Annual Crop Inventory)
197 0
Google Earth Engine ——数据全解析专辑(Canada AAFC Annual Crop Inventory)

热门文章

最新文章