Android帧缓冲区(Frame Buffer)硬件抽象层(HAL)模块Gralloc的实现原理分析(4)

简介:
   成员变量fd指向一个文件描述符,这个文件描述符要么指向帧缓冲区设备,要么指向一块匿名共享内存,取决于它的宿主结构体private_handle_t描述的一个图形缓冲区是在帧缓冲区分配的,还是在内存中分配的。
        成员变量magic指向一个魔数,它的值由静态成员变量sMagic来指定,用来标识一个private_handle_t结构体。
        成员变量flags用来描述一个图形缓冲区的标志,它的值要么等于0,要么等于PRIV_FLAGS_FRAMEBUFFER。当一个图形缓冲区的标志值等于PRIV_FLAGS_FRAMEBUFFER的时候,就表示它是在帧缓冲区中分配的。
       成员变量size用来描述一个图形缓冲区的大小。
       成员变量offset用来描述一个图形缓冲区的偏移地址。例如,当一个图形缓冲区是在一块内存中分块的时候,假设这块内存的地址为start,那么这个图形缓冲区的起始地址就为start + offset。
       成员变量base用来描述一个图形缓冲区的实际地址,它是通过成员变量offset来计算得到的。例如,上面计算得到的start + offset的值就保存在成员变量base中。
       成员变量pid用来描述一个图形缓冲区的创建者的PID。例如,如果一个图形缓冲区是在ID值为1000的进程中创建的,那么用来描述这个图形缓冲区的private_handle_t结构体的成员变量pid的值就等于1000。
       结构体private_handle_t的静态成员变量sMagic前面已经描述过了,另外两个静态成员变量sNumInts和sNumFds的值分别等于1和6,表示结构体private_handle_t包含有1个文件描述符和6个整数,它们是用来初始化结构体private_handle_t的父类native_handle_t的成员变量numInts和numFds的,如结构体private_handle_t的构造函数所示。从这里就可以看出,结构体private_handle_t的父类native_handle_t的成员变量data所指向的缓冲区就是由结构体private_handle_t的成员变量fds、magic、flags、size、offset、base和pid所占用的连续内存块来组成的,一共包含有7个整数。
       结构体private_handle_t还定义了一个静态成员函数validate,用来验证一个native_handle_t指针是否指向了一个private_handle_t结构体。
       至此,Gralloc模块的加载过程以及相关的数据结构体就介绍到这里,接下来我们分别分析定义在Gralloc模块中的gralloc和fb设备的打开过程。
       2. gralloc设备的打开过程
       在Gralloc模块中,gralloc设备的ID值定义为GRALLOC_HARDWARE_GPU0。GRALLOC_HARDWARE_GPU0是一个宏,定义在文件hardware/libhardware/include/hardware/gralloc.h中, 如下所示:
  1. #define GRALLOC_HARDWARE_GPU0 "gpu0"  
       gralloc设备使用结构体alloc_device_t 来描述。结构体alloc_device_t有两个成员函数alloc和free,分别用来分配和释放图形缓冲区。
 
       结构体alloc_device_t 也是定义在文件hardware/libhardware/include/hardware/gralloc.h中, 如下所示:
  1. typedef struct alloc_device_t {  
  2.     struct hw_device_t common;  
  3.   
  4.     int (*alloc)(struct alloc_device_t* dev,  
  5.             int w, int h, int format, int usage,  
  6.             buffer_handle_t* handle, int* stride);  
  7.   
  8.     int (*free)(struct alloc_device_t* dev,  
  9.             buffer_handle_t handle);  
  10.   
  11. } alloc_device_t;  
       Gralloc模块在在文件hardware/libhardware/include/hardware/gralloc.h中定义了一个帮助函数gralloc_open,用来打开gralloc设备,如下所示:
  1. static inline int gralloc_open(const struct hw_module_t* module,  
  2.         struct alloc_device_t** device) {  
  3.     return module->methods->open(module,  
  4.             GRALLOC_HARDWARE_GPU0, (struct hw_device_t**)device);  
  5. }  
       参数module指向的是一个用来描述Gralloc模块的hw_module_t结构体,它的成员变量methods所指向的一个hw_module_methods_t结构体的成员函数open指向了Gralloc模块中的函数gralloc_device_open。
 
       函数gralloc_device_open定义在文件hardware/libhardware/modules/gralloc/gralloc.cpp文件中,如下所示:
  1. struct gralloc_context_t {  
  2.     alloc_device_t  device;  
  3.     /* our private data here */  
  4. };  
  5.   
  6. ......  
  7.   
  8. int gralloc_device_open(const hw_module_t* module, const char* name,  
  9.         hw_device_t** device)  
  10. {  
  11.     int status = -EINVAL;  
  12.     if (!strcmp(name, GRALLOC_HARDWARE_GPU0)) {  
  13.         gralloc_context_t *dev;  
  14.         dev = (gralloc_context_t*)malloc(sizeof(*dev));  
  15.   
  16.         /* initialize our state here */  
  17.         memset(dev, 0, sizeof(*dev));  
  18.   
  19.         /* initialize the procs */  
  20.         dev->device.common.tag = HARDWARE_DEVICE_TAG;  
  21.         dev->device.common.version = 0;  
  22.         dev->device.common.module = const_cast<hw_module_t*>(module);  
  23.         dev->device.common.close = gralloc_close;  
  24.   
  25.         dev->device.alloc   = gralloc_alloc;  
  26.         dev->device.free    = gralloc_free;  
  27.   
  28.         *device = &dev->device.common;  
  29.         status = 0;  
  30.     }   
  31.     ......  
  32.   
  33.     return status;  
  34. }  
 
        这个函数主要是用来创建一个gralloc_context_t结构体,并且对它的成员变量device进行初始化。结构体gralloc_context_t的成员变量device的类型为gralloc_device_t,它用来描述一个gralloc设备。前面提到,gralloc设备是用来分配和释放图形缓冲区的,这是通过调用它的成员函数alloc和free来实现的。从这里可以看出,函数gralloc_device_open所打开的gralloc设备的成员函数alloc和free分别被设置为Gralloc模块中的函数gralloc_alloc和gralloc_free,后面我们再详细分析它们的实现。
        至此,gralloc设备的打开过程就分析完成了,接下来我们继续分析fb设备的打开过程。




本文转自 Luoshengyang 51CTO博客,原文链接:http://blog.51cto.com/shyluo/967071,如需转载请自行联系原作者
相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
10月前
|
开发框架 前端开发 Android开发
Flutter 与原生模块(Android 和 iOS)之间的通信机制,包括方法调用、事件传递等,分析了通信的必要性、主要方式、数据传递、性能优化及错误处理,并通过实际案例展示了其应用效果,展望了未来的发展趋势
本文深入探讨了 Flutter 与原生模块(Android 和 iOS)之间的通信机制,包括方法调用、事件传递等,分析了通信的必要性、主要方式、数据传递、性能优化及错误处理,并通过实际案例展示了其应用效果,展望了未来的发展趋势。这对于实现高效的跨平台移动应用开发具有重要指导意义。
913 4
|
10月前
|
安全 Android开发 数据安全/隐私保护
深入探讨iOS与Android系统安全性对比分析
在移动操作系统领域,iOS和Android无疑是两大巨头。本文从技术角度出发,对这两个系统的架构、安全机制以及用户隐私保护等方面进行了详细的比较分析。通过深入探讨,我们旨在揭示两个系统在安全性方面的差异,并为用户提供一些实用的安全建议。
|
10月前
|
安全 Android开发 数据安全/隐私保护
深入探索Android与iOS系统安全性的对比分析
在当今数字化时代,移动操作系统的安全已成为用户和开发者共同关注的重点。本文旨在通过比较Android与iOS两大主流操作系统在安全性方面的差异,揭示两者在设计理念、权限管理、应用审核机制等方面的不同之处。我们将探讨这些差异如何影响用户的安全体验以及可能带来的风险。
411 21
|
11月前
|
缓存 Java Shell
Android 系统缓存扫描与清理方法分析
Android 系统缓存从原理探索到实现。
344 15
Android 系统缓存扫描与清理方法分析
|
9月前
|
Java 开发工具 Android开发
安卓与iOS开发环境对比分析
在移动应用开发的广阔天地中,安卓和iOS两大平台各自占据半壁江山。本文深入探讨了这两个平台的开发环境,从编程语言、开发工具到用户界面设计等多个角度进行比较。通过实际案例分析和代码示例,我们旨在为开发者提供一个清晰的指南,帮助他们根据项目需求和个人偏好做出明智的选择。无论你是初涉移动开发领域的新手,还是寻求跨平台解决方案的资深开发者,这篇文章都将为你提供宝贵的信息和启示。
167 8
|
Web App开发 Android开发
|
2月前
|
安全 数据库 Android开发
在Android开发中实现两个Intent跳转及数据交换的方法
总结上述内容,在Android开发中,Intent不仅是活动跳转的桥梁,也是两个活动之间进行数据交换的媒介。运用Intent传递数据时需注意数据类型、传输大小限制以及安全性问题的处理,以确保应用的健壯性和安全性。
116 11
|
3月前
|
安全 Java Android开发
为什么大厂要求安卓开发者掌握Kotlin和Jetpack?深度解析现代Android开发生态优雅草卓伊凡
为什么大厂要求安卓开发者掌握Kotlin和Jetpack?深度解析现代Android开发生态优雅草卓伊凡
140 0
为什么大厂要求安卓开发者掌握Kotlin和Jetpack?深度解析现代Android开发生态优雅草卓伊凡
|
6月前
|
JavaScript Linux 网络安全
Termux安卓终端美化与开发实战:从下载到插件优化,小白也能玩转Linux
Termux是一款安卓平台上的开源终端模拟器,支持apt包管理、SSH连接及Python/Node.js/C++开发环境搭建,被誉为“手机上的Linux系统”。其特点包括零ROOT权限、跨平台开发和强大扩展性。本文详细介绍其安装准备、基础与高级环境配置、必备插件推荐、常见问题解决方法以及延伸学习资源,帮助用户充分利用Termux进行开发与学习。适用于Android 7+设备,原创内容转载请注明来源。
1114 77