C语言嵌入式系统编程修炼之道——性能优化篇

简介:

C语言嵌入式系统编程修炼之道——性能优化篇

作者: 宋宝华  e-mail: [email]21cnbao@21cn.com[/email]

1.使用宏定义

C 语言中,宏是产生内嵌代码的唯一方法。对于嵌入式系统而言,为了能达到性能要求,宏是一种很好的代替函数的方法。
写一个“标准”宏 MIN  ,这个宏输入两个参数并返回较小的一个:
     错误做法:
#define MIN(A,B)    ( A <= B ? A : B )
正确做法:
#define MIN(A,B)  (( A <= (B) ? (A) : (B) )
对于宏,我们需要知道三点:
(1) 宏定义“像”函数;
(2) 宏定义不是函数,因而需要括上所有“参数”;
(3) 宏定义可能产生副作用。
下面的代码:
least = MIN(*p++, b);
将被替换为:
( (*p++) <= (b) ?(*p++):(b) )
发生的事情无法预料。
因而不要给宏定义传入有副作用的“参数”。

2.使用寄存器变量

当对一个变量频繁被读写时,需要反复访问内存,从而花费大量的存取时间。为此, C 语言提供了一种变量,即寄存器变量。这种变量存放在 CPU 的寄存器中,使用时,不需要访问内存,而直接从寄存器中读写,从而提高效率。寄存器变量的说明符是 register 。对于循环次数较多的循环控制变量及循环体内反复使用的变量均可定义为寄存器变量,而循环计数是应用寄存器变量的最好候选者。
(1)                 只有局部自动变量和形参才可以定义为寄存器变量。因为寄存器变量属于动态存储方式,凡需要采用静态存储方式的量都不能定义为寄存器变量,包括:模块间全局变量、模块内全局变量、局部 static 变量;
(2)                register 是一个“建议”型关键字,意指程序建议该变量放在寄存器中,但最终该变量可能因为条件不满足并未成为寄存器变量,而是被放在了存储器中,但编译器中并不报错(在 C++ 语言中有另一个“建议”型关键字: inline )。
下面是一个采用寄存器变量的例子:
/*  1+2+3+….+n 的值  */
WORD Addition(BYTE n)
{
register i,s=0;
for(i=1;i<=n;i++)
{
s=s+i;
}
return s;
}
本程序循环 n 次, i s 都被频繁使用,因此可定义为寄存器变量。

3.内嵌汇编

程序中对时间要求苛刻的部分可以用内嵌汇编来重写,以带来速度上的显著提高。但是,开发和测试汇编代码是一件辛苦的工作,它将花费更长的时间,因而要慎重选择要用汇编的部分。
在程序中,存在一个 80-20 原则,即 20% 的程序消耗了 80% 的运行时间,因而我们要改进效率,最主要是考虑改进那 20% 的代码。
嵌入式 C 程序中主要使用在线汇编,即在 C 程序中直接插入 _asm{  } 内嵌汇编语句:
/*  把两个输入参数的值相加,结果存放到另外一个全局变量中  */
int  result; 
void Add(long  a,  long  *b) 
{ 
    _asm 
   { 
     MOV       AX,  a     
     MOV       BX,  b     
     ADD       AX,  [BX]
     MOV       result, AX
   } 
}   

4.利用硬件特性

首先要明白 CPU 对各种存储器的访问速度,基本上是:
CPU 内部 RAM   >   外部同步 RAM   >  外部异步 RAM   >   FLASH/ROM
对于程序代码,已经被烧录在 FLASH ROM 中,我们可以让 CPU 直接从其中读取代码执行,但通常这不是一个好办法,我们最好在系统启动后将 FLASH ROM 中的目标代码拷贝入 RAM 中后再执行以提高取指令速度;
对于 UART 等设备,其内部有一定容量的接收 BUFFER ,我们应尽量在 BUFFER 被占满后再向 CPU 提出中断。例如计算机终端在向目标机通过 RS-232 传递数据时,不宜设置 UART 只接收到一个 BYTE 就向 CPU 提中断,从而无谓浪费中断处理时间;
如果对某设备能采取 DMA 方式读取,就采用 DMA 读取, DMA 读取方式在读取目标中包含的存储信息较大时效率较高,其数据传输的基本单位是块,而所传输的数据是从设备直接送入内存的(或者相反)。 DMA 方式较之中断驱动方式,减少了 CPU  对外设的干预,进一步提高了 CPU 与外设的并行操作程度。

5.活用位操作

    使用 C 语言的位操作可以减少除法和取模的运算。在计算机程序中数据的位是可以操作的最小数据单位,理论上可以用“位运算”来完成所有的运算和操作,因而,灵活的位操作可以有效地提高程序运行的效率。举例如下:
/*  方法 1 */
int i,j;
i = 879 / 16;
j = 562 % 32;
 
 
/*  方法 2 */
int i,j;
i = 879 >> 4;
j = 562 - (562 >> 5 << 5);
对于以 2 的指数次方为“ * ”、“ / ”或“ % ”因子的数学运算,转化为移位运算“ << >> ”通常可以提高算法效率。因为乘除运算指令周期通常比移位运算大。
C 语言位运算除了可以提高运算效率外,在嵌入式系统的编程中,它的另一个最典型的应用,而且十分广泛地正在被使用着的是位间的与( & )、或( | )、非( ~ )操作,这跟嵌入式系统的编程特点有很大关系。我们通常要对硬件寄存器进行位设置,譬如,我们通过将 AM186ER 80186 处理器的中断屏蔽控制寄存器的第低 6 位设置为 0 (开中断 2 ),最通用的做法是:
#define INT_I2_MASK     0x0040  
wTemp = inword(INT_MASK);
outword(INT_MASK, wTemp &~INT_I2_MASK);
而将该位设置为 1 的做法是:
#define INT_I2_MASK     0x0040  
wTemp = inword(INT_MASK);
outword(INT_MASK, wTemp | INT_I2_MASK);
判断该位是否为 1 的做法是:
#define INT_I2_MASK     0x0040  
wTemp = inword(INT_MASK);
if(wTemp & INT_I2_MASK)
{
       /*  该位为 1 */
}
上述方法在嵌入式系统的编程中是非常常见的,我们需要牢固掌握。

总结

在性能优化方面永远注意 80-20 准备,不要优化程序中开销不大的那 80% ,这是劳而无功的。
宏定义是 C 语言中实现类似函数功能而又不具函数调用和返回开销的较好方法,但宏在本质上不是函数,因而要防止宏展开后出现不可预料的结果,对宏的定义和使用要慎而处之。很遗憾,标准 C 至今没有包括 C++ inline 函数的功能, inline 函数兼具无调用开销和安全的优点。
使用寄存器变量、内嵌汇编和活用位操作也是提高程序效率的有效方法。

除了编程上的技巧外,为提高系统的运行效率,我们通常也需要最大可能地利用各种硬件设备自身的特点来减小其运转开销,例如减小中断次数、利用DMA传输方式等。



 本文转自 21cnbao 51CTO博客,原文链接:http://blog.51cto.com/21cnbao/120785,如需转载请自行联系原作者




相关文章
|
12天前
|
存储 算法 Linux
C语言 多进程编程(一)进程创建
本文详细介绍了Linux系统中的进程管理。首先,文章解释了进程的概念及其特点,强调了进程作为操作系统中独立可调度实体的重要性。文章还深入讲解了Linux下的进程管理,包括如何获取进程ID、进程地址空间、虚拟地址与物理地址的区别,以及进程状态管理和优先级设置等内容。此外,还介绍了常用进程管理命令如`ps`、`top`、`pstree`和`kill`的使用方法。最后,文章讨论了进程的创建、退出和等待机制,并展示了如何通过`fork()`、`exec`家族函数以及`wait()`和`waitpid()`函数来管理和控制进程。此外,还介绍了守护进程的创建方法。
C语言 多进程编程(一)进程创建
|
12天前
|
Linux C语言
C语言 多进程编程(三)信号处理方式和自定义处理函数
本文详细介绍了Linux系统中进程间通信的关键机制——信号。首先解释了信号作为一种异步通知机制的特点及其主要来源,接着列举了常见的信号类型及其定义。文章进一步探讨了信号的处理流程和Linux中处理信号的方式,包括忽略信号、捕捉信号以及执行默认操作。此外,通过具体示例演示了如何创建子进程并通过信号进行控制。最后,讲解了如何通过`signal`函数自定义信号处理函数,并提供了完整的示例代码,展示了父子进程之间通过信号进行通信的过程。
|
12天前
|
Linux C语言
C语言 多进程编程(四)定时器信号和子进程退出信号
本文详细介绍了Linux系统中的定时器信号及其相关函数。首先,文章解释了`SIGALRM`信号的作用及应用场景,包括计时器、超时重试和定时任务等。接着介绍了`alarm()`函数,展示了如何设置定时器以及其局限性。随后探讨了`setitimer()`函数,比较了它与`alarm()`的不同之处,包括定时器类型、精度和支持的定时器数量等方面。最后,文章讲解了子进程退出时如何利用`SIGCHLD`信号,提供了示例代码展示如何处理子进程退出信号,避免僵尸进程问题。
|
12天前
|
消息中间件 Unix Linux
C语言 多进程编程(五)消息队列
本文介绍了Linux系统中多进程通信之消息队列的使用方法。首先通过`ftok()`函数生成消息队列的唯一ID,然后使用`msgget()`创建消息队列,并通过`msgctl()`进行操作,如删除队列。接着,通过`msgsnd()`函数发送消息到消息队列,使用`msgrcv()`函数从队列中接收消息。文章提供了详细的函数原型、参数说明及示例代码,帮助读者理解和应用消息队列进行进程间通信。
|
12天前
|
缓存 Linux C语言
C语言 多进程编程(六)共享内存
本文介绍了Linux系统下的多进程通信机制——共享内存的使用方法。首先详细讲解了如何通过`shmget()`函数创建共享内存,并提供了示例代码。接着介绍了如何利用`shmctl()`函数删除共享内存。随后,文章解释了共享内存映射的概念及其实现方法,包括使用`shmat()`函数进行映射以及使用`shmdt()`函数解除映射,并给出了相应的示例代码。最后,展示了如何在共享内存中读写数据的具体操作流程。
|
12天前
|
消息中间件 Unix Linux
C语言 多进程编程(二)管道
本文详细介绍了Linux下的进程间通信(IPC),重点讨论了管道通信机制。首先,文章概述了进程间通信的基本概念及重要性,并列举了几种常见的IPC方式。接着深入探讨了管道通信,包括无名管道(匿名管道)和有名管道(命名管道)。无名管道主要用于父子进程间的单向通信,有名管道则可用于任意进程间的通信。文中提供了丰富的示例代码,展示了如何使用`pipe()`和`mkfifo()`函数创建管道,并通过实例演示了如何利用管道进行进程间的消息传递。此外,还分析了管道的特点、优缺点以及如何通过`errno`判断管道是否存在,帮助读者更好地理解和应用管道通信技术。
|
12天前
|
Linux C语言
C语言 多进程编程(七)信号量
本文档详细介绍了进程间通信中的信号量机制。首先解释了资源竞争、临界资源和临界区的概念,并重点阐述了信号量如何解决这些问题。信号量作为一种协调共享资源访问的机制,包括互斥和同步两方面。文档还详细描述了无名信号量的初始化、等待、释放及销毁等操作,并提供了相应的 C 语言示例代码。此外,还介绍了如何创建信号量集合、初始化信号量以及信号量的操作方法。最后,通过实际示例展示了信号量在进程互斥和同步中的应用,包括如何使用信号量避免资源竞争,并实现了父子进程间的同步输出。附带的 `sem.h` 和 `sem.c` 文件提供了信号量操作的具体实现。
|
3天前
|
存储 Serverless C语言
【C语言基础考研向】11 gets函数与puts函数及str系列字符串操作函数
本文介绍了C语言中的`gets`和`puts`函数,`gets`用于从标准输入读取字符串直至换行符,并自动添加字符串结束标志`\0`。`puts`则用于向标准输出打印字符串并自动换行。此外,文章还详细讲解了`str`系列字符串操作函数,包括统计字符串长度的`strlen`、复制字符串的`strcpy`、比较字符串的`strcmp`以及拼接字符串的`strcat`。通过示例代码展示了这些函数的具体应用及注意事项。
|
6天前
|
存储 C语言
C语言程序设计核心详解 第十章:位运算和c语言文件操作详解_文件操作函数
本文详细介绍了C语言中的位运算和文件操作。位运算包括按位与、或、异或、取反、左移和右移等六种运算符及其复合赋值运算符,每种运算符的功能和应用场景都有具体说明。文件操作部分则涵盖了文件的概念、分类、文件类型指针、文件的打开与关闭、读写操作及当前读写位置的调整等内容,提供了丰富的示例帮助理解。通过对本文的学习,读者可以全面掌握C语言中的位运算和文件处理技术。
|
6天前
|
存储 C语言
C语言程序设计核心详解 第七章 函数和预编译命令
本章介绍C语言中的函数定义与使用,以及预编译命令。主要内容包括函数的定义格式、调用方式和示例分析。C程序结构分为`main()`单框架或多子函数框架。函数不能嵌套定义但可互相调用。变量具有类型、作用范围和存储类别三种属性,其中作用范围分为局部和全局。预编译命令包括文件包含和宏定义,宏定义分为无参和带参两种形式。此外,还介绍了变量的存储类别及其特点。通过实例详细解析了函数调用过程及宏定义的应用。