黑客之旅――原始套接字(Raw Socket)透析(1)--引言

简介:
1.引言
大多数程序员所接触到的套接字(Socket)为两类:
(1)流式套接字(SOCK_STREAM):一种面向连接的Socket,针对于面向连接的TCP服务应用;
(2)数据报式套接字(SOCK_DGRAM):一种无连接的Socket,对应于无连接的UDP服务应用。
从用户的角度来看,SOCK_STREAM、SOCK_DGRAM这两类套接字似乎的确涵盖了TCP/IP应用的全部,因为基于TCP/IP的应用,从协议栈的层次上讲,在传输层的确只可能建立于TCP或UDP协议之上(图1),而SOCK_STREAM、SOCK_DGRAM又分别对应于TCP和UDP,所以几乎所有的应用都可以用这两类套接字实现。
 
图1 TCP/IP协议栈
但是,当我们面对如下问题时,SOCK_STREAM、SOCK_DGRAM将显得这样无助:
(1) 怎样发送一个自定义的IP包?
(2) 怎样发送一个ICMP协议包?
(3) 怎样使本机进入杂糅模式,从而能够进行网络sniffer?
(4) 怎样分析所有经过网络的包,而不管这样包是否是发给自己的?
(5) 怎样伪装本地的IP地址?
这使得我们必须面对另外一个深刻的主题――原始套接字(Raw Socket)。Raw Socket广泛应用于高级网络编程,也是一种广泛的黑客手段。著名的网络sniffer、拒绝服务攻击(DOS)、IP欺骗等都可以以Raw Socket实现。
Raw Socket与标准套接字(SOCK_STREAM、SOCK_DGRAM)的区别在于前者直接置“根”于操作系统网络核心(Network Core),而SOCK_STREAM、SOCK_DGRAM则“悬浮”于TCP和UDP协议的外围,如图2所示:
 
图2 Raw Socket与标准Socket
当我们使用Raw Socket的时候,可以完全自定义IP包,一切形式的包都可以“制造”出来。因此,本文事先必须对TCP/IP所涉及IP包结构进行必要的交待。
目前,IPv4的报头结构为:
版本号(4) 包头长(4) 服务类型(8) 数据包长度(16)
标识(16) 偏移量(16)
生存时间(8) 传输协议(8) 校验和(16)
源地址(32) 
目的地址(32) 
选项(8) ......... 填充
对其进行数据结构封装:
typedef struct _iphdr //定义IP报头 

 unsigned char h_lenver; //4位首部长度+4位IP版本号 
 unsigned char tos; //8位服务类型TOS 
 unsigned short total_len; //16位总长度(字节) 
 unsigned short ident; //16位标识 
 unsigned short frag_and_flags; //3位标志位 
 unsigned char ttl; //8位生存时间 TTL 
 unsigned char proto; //8位协议 (TCP, UDP 或其他) 
 unsigned short checksum; //16位IP首部校验和 
 unsigned int sourceIP; //32位源IP地址 
 unsigned int destIP; //32位目的IP地址 
} IP_HEADER;
或者将上述定义中的第一字节按位拆分:
typedef struct _iphdr //定义IP报头 

 unsigned char h_len : 4; //4位首部长度
 unsigned char ver : 4;   //4位IP版本号 
 unsigned char tos; 
 unsigned short total_len; 
 unsigned short ident; 
 unsigned short frag_and_flags; 
 unsigned char ttl; 
 unsigned char proto; 
 unsigned short checksum; 
 unsigned int sourceIP; 
 unsigned int destIP; 
} IP_HEADER;
更加严格地讲,上述定义中h_len、ver字段的内存存放顺序还与具体CPU的Endian有关,因此,更加严格的IP_HEADER可定义为:
typedef struct _iphdr //定义IP报头 

#if defined(__LITTLE_ENDIAN_BITFIELD)
 unsigned char h_len : 4; //4位首部长度
 unsigned char ver : 4;   //4位IP版本号 
#elif defined (__BIG_ENDIAN_BITFIELD)
 unsigned char ver : 4;   //4位IP版本号 
 unsigned char h_len : 4; //4位首部长度
#endif
 unsigned char tos; 
 unsigned short total_len; 
 unsigned short ident; 
 unsigned short frag_and_flags; 
 unsigned char ttl; 
 unsigned char proto; 
 unsigned short checksum; 
 unsigned int sourceIP; 
 unsigned int destIP; 
} IP_HEADER;
TCP报头结构为:
源端口(16) 目的端口(16)
序列号(32)
确认号(32)
TCP偏移量(4) 保留(6) 标志(6) 窗口(16)
校验和(16) 紧急(16)
选项(0或32)
数据(可变)
    对应数据结构:
typedef struct psd_hdr //定义TCP伪报头 

 unsigned long saddr; //源地址 
 unsigned long daddr; //目的地址 
 char mbz; 
 char ptcl; //协议类型 
 unsigned short tcpl; //TCP长度 
}PSD_HEADER;
typedef struct _tcphdr //定义TCP报头 

 unsigned short th_sport; //16位源端口 
 unsigned short th_dport; //16位目的端口 
 unsigned int th_seq; //32位序列号 
 unsigned int th_ack; //32位确认号 
 unsigned char th_lenres;   //4位首部长度/4位保留字 
 unsigned char th_flag; //6位标志位 
 unsigned short th_win; //16位窗口大小 
 unsigned short th_sum; //16位校验和 
 unsigned short th_urp; //16位紧急数据偏移量 
} TCP_HEADER;
同样地,TCP头的定义也可以将位域拆分:
typedef struct _tcphdr
{
 unsigned short th_sport; 
 unsigned short th_dport; 
 unsigned int th_seq; 
 unsigned int th_ack; 
 /*little-endian*/
 unsigned short tcp_res1: 4,  tcp_hlen: 4, tcp_fin: 1, tcp_syn: 1, tcp_rst: 1, tcp_psh: 1,     tcp_ack: 1, tcp_urg: 1, tcp_res2: 2;
 unsigned short th_win; 
 unsigned short th_sum; 
 unsigned short th_urp; 
} TCP_HEADER;
UDP报头为:
源端口(16) 目的端口(16)
报文长(16) 校验和(16)
对应的数据结构为:
typedef struct _udphdr //定义UDP报头 
{
 unsigned short uh_sport;//16位源端口
 unsigned short uh_dport;//16位目的端口
 unsigned short uh_len;//16位长度
 unsigned short uh_sum;//16位校验和
} UDP_HEADER;
ICMP协议是网络层中一个非常重要的协议,其全称为Internet Control Message Protocol(因特网控制报文协议),ICMP协议弥补了IP的缺限,它使用IP协议进行信息传递,向数据包中的源端节点提供发生在网络层的错误信息反馈。ICMP报头为:
类型(8) 代码(8) 校验和(16)
消息内容
常用的回送与或回送响应ICMP消息对应数据结构为:
typedef struct _icmphdr //定义ICMP报头(回送与或回送响应)

    unsigned char i_type;//8位类型
    unsigned char i_code; //8位代码 
    unsigned short i_cksum; //16位校验和 
    unsigned short i_id; //识别号(一般用进程号作为识别号) 
    unsigned short i_seq; //报文序列号 
    unsigned int timestamp;//时间戳 
} ICMP_HEADER;
常用的ICMP报文包括ECHO-REQUEST(响应请求消息)、ECHO-REPLY(响应应答消息)、Destination Unreachable(目标不可到达消息)、Time Exceeded(超时消息)、Parameter Problems(参数错误消息)、Source Quenchs(源抑制消息)、Redirects(重定向消息)、Timestamps(时间戳消息)、Timestamp Replies(时间戳响应消息)、Address Masks(地址掩码请求消息)、Address Mask Replies(地址掩码响应消息)等,是Internet上十分重要的消息。后面章节中所涉及到的ping命令、ICMP拒绝服务攻击、路由欺骗都与ICMP协议息息相关。
另外,本系列文章中的部分源代码参考了一些优秀程序员的开源项目,由于篇幅的关系我们不能一一列举,在此一并表示感谢。
So, let’s go.




 本文转自 21cnbao 51CTO博客,原文链接:http://blog.51cto.com/21cnbao/120084,如需转载请自行联系原作者


相关文章
|
14天前
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
14天前
|
程序员 开发者 Python
Python网络编程基础(Socket编程) 错误处理和异常处理的最佳实践
【4月更文挑战第11天】在网络编程中,错误处理和异常管理不仅是为了程序的健壮性,也是为了提供清晰的用户反馈以及优雅的故障恢复。在前面的章节中,我们讨论了如何使用`try-except`语句来处理网络错误。现在,我们将深入探讨错误处理和异常处理的最佳实践。
|
18天前
|
网络协议 程序员 Python
pythonTCP客户端编程创建Socket对象
【4月更文挑战第6天】本教程介绍了TCP客户端如何创建Socket对象。Socket作为网络通信的基础单元,包含协议、IP地址和端口等信息。在TCP/IP中,Socket分为流式(TCP)、数据报(UDP)和原始套接字。以Python为例,创建TCP Socket对象需调用`socket.socket(AF_INET, SOCK_STREAM)`。为确保健壮性,应使用异常处理处理可能的`socket.error`。学习本教程将帮助你掌握TCP客户端创建Socket对象的技能。
|
1月前
|
网络协议 安全 API
计算机网络之Socket编程
计算机网络之Socket编程
|
2月前
|
网络协议 安全 开发者
Python 中的 Socket 编程
Python 中的 Socket 编程
44 4
|
3月前
|
监控 安全 Linux
socket编程之常用api介绍与socket、select、poll、epoll高并发服务器模型代码实现(3)
高并发服务器模型-poll poll介绍   poll跟select类似, 监控多路IO, 但poll不能跨平台。其实poll就是把select三个文件描述符集合变成一个集合了。
36 0
|
1天前
|
存储 网络协议 关系型数据库
Python从入门到精通:2.3.2数据库操作与网络编程——学习socket编程,实现简单的TCP/UDP通信
Python从入门到精通:2.3.2数据库操作与网络编程——学习socket编程,实现简单的TCP/UDP通信
|
13天前
|
网络协议 Java API
Python网络编程基础(Socket编程)Twisted框架简介
【4月更文挑战第12天】在网络编程的实践中,除了使用基本的Socket API之外,还有许多高级的网络编程库可以帮助我们更高效地构建复杂和健壮的网络应用。这些库通常提供了异步IO、事件驱动、协议实现等高级功能,使得开发者能够专注于业务逻辑的实现,而不用过多关注底层的网络细节。