2.Raw Socket基础
在进入Raw Socket多种强大的应用之前,我们先讲解怎样建立一个Raw Socket及怎样用建立的Raw Socket发送和接收IP包。
2.1建立Raw Socket
在Windows平台上,为了使用Raw Socket,需先初始化WINSOCK:
// 启动 Winsock
WSAData wsaData;
if (WSAStartup(MAKEWORD(2, 1), &wsaData) != 0)
{
cerr << "Failed to find Winsock 2.1 or better." << endl;
return 1;
}
MAKEWORD(2, 1)组成一个版本字段,2.1版,同样的,MAKEWORD(2, 2)意味着2.2版。MAKEWORD本身定义为:
inline word MakeWord(const byte wHigh, const byte wLow)
{
return ((word)wHigh) << 8 | wLow;
}
因此MAKEWORD(2, 1)实际等同于0x0201。同样地,0x0101可等同于MAKEWORD(1, 1)。
与WSAStartup()的函数为WSACleanup(),在所有的socket都使用完后调用,如:
void sock_cleanup()
{
#ifdef WIN32
sockcount--;
在进入Raw Socket多种强大的应用之前,我们先讲解怎样建立一个Raw Socket及怎样用建立的Raw Socket发送和接收IP包。
2.1建立Raw Socket
在Windows平台上,为了使用Raw Socket,需先初始化WINSOCK:
// 启动 Winsock
WSAData wsaData;
if (WSAStartup(MAKEWORD(2, 1), &wsaData) != 0)
{
cerr << "Failed to find Winsock 2.1 or better." << endl;
return 1;
}
MAKEWORD(2, 1)组成一个版本字段,2.1版,同样的,MAKEWORD(2, 2)意味着2.2版。MAKEWORD本身定义为:
inline word MakeWord(const byte wHigh, const byte wLow)
{
return ((word)wHigh) << 8 | wLow;
}
因此MAKEWORD(2, 1)实际等同于0x0201。同样地,0x0101可等同于MAKEWORD(1, 1)。
与WSAStartup()的函数为WSACleanup(),在所有的socket都使用完后调用,如:
void sock_cleanup()
{
#ifdef WIN32
sockcount--;
if (sockcount == 0)
WSACleanup();
#endif
}
接下来,定义一个Socket句柄:
SOCKET sd; // RAW Socket句柄
创建Socket并将句柄赋值给定义的sd,可以使用WSASocket()函数来完成,其原型为:
SOCKET WSASocket(int af, int type, int protocol, LPWSAPROTOCOL_INFO
lpProtocolInfo, GROUP g, DWORD dwFlags);
其中的参数定义为:
af:地址家族,一般为AF_INET,指代IPv4(The Internet Protocol version 4)地址家族。
type:套接字类型,如果创建原始套接字,应该使用SOCK_RAW;
Protocol:协议类型,如IPPROTO_TCP、IPPROTO_UDP等;
lpProtocolInfo :WSAPROTOCOL_INFO结构体指针;
dwFlags:套接字属性标志。
例如,下面的代码定义ICMP协议类型的原始套接字:
sd = WSASocket(AF_INET, SOCK_RAW, IPPROTO_ICMP, 0, 0, 0);
创建Socket也可以使用socket()函数:
SOCKET WSAAPI socket( int af, int type, int protocol);
参数的定义与WSASocket()函数相同。
为了使用socket()函数创建的Socket,还需要将这个Socket与sockaddr绑定:
SOCKADDR_IN addr_in;
WSACleanup();
#endif
}
接下来,定义一个Socket句柄:
SOCKET sd; // RAW Socket句柄
创建Socket并将句柄赋值给定义的sd,可以使用WSASocket()函数来完成,其原型为:
SOCKET WSASocket(int af, int type, int protocol, LPWSAPROTOCOL_INFO
lpProtocolInfo, GROUP g, DWORD dwFlags);
其中的参数定义为:
af:地址家族,一般为AF_INET,指代IPv4(The Internet Protocol version 4)地址家族。
type:套接字类型,如果创建原始套接字,应该使用SOCK_RAW;
Protocol:协议类型,如IPPROTO_TCP、IPPROTO_UDP等;
lpProtocolInfo :WSAPROTOCOL_INFO结构体指针;
dwFlags:套接字属性标志。
例如,下面的代码定义ICMP协议类型的原始套接字:
sd = WSASocket(AF_INET, SOCK_RAW, IPPROTO_ICMP, 0, 0, 0);
创建Socket也可以使用socket()函数:
SOCKET WSAAPI socket( int af, int type, int protocol);
参数的定义与WSASocket()函数相同。
为了使用socket()函数创建的Socket,还需要将这个Socket与sockaddr绑定:
SOCKADDR_IN addr_in;
addr_in.sin_family = AF_INET;
addr_in.sin_port = INADDR_ANY;
addr_in.sin_addr.S_un.S_addr = GetLocalIP();
addr_in.sin_port = INADDR_ANY;
addr_in.sin_addr.S_un.S_addr = GetLocalIP();
nRetCode = bind(sd, (struct sockaddr*) &addr_in, sizeof(addr_in));
if (SOCKET_ERROR == nRetCode)
{
printf("BIND Error!%d\n", WSAGetLastError());
}
其中使用的struct sockaddr_in(即SOCKADDR_IN)为:
struct sockaddr_in
{
unsigned short sin_family;
unsigned short int sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[8];
}
而bind()函数第二个参数的struct sockaddr类型定义为:
struct sockaddr
{
unisgned short as_family;
char sa_data[14];
};
实际上,bind()函数采用struct sockaddr是为了考虑兼容性,最终struct sockaddr和struct sockaddr_in的内存占用是等同的。struct sockaddr_in中的struct in_addr成员占用4个字节,为32位的IP地址,定义为:
typedef struct in_addr
{
union
{
struct
{
u_char s_b1, s_b2, s_b3, s_b4;
} S_un_b;
struct
{
u_short s_w1, s_w2;
} S_un_w;
u_long S_addr;
}
S_un;
} IN_ADDR, *PIN_ADDR, FAR *LPIN_ADDR;
把32位的IP地址定义为上述联合体将使用户可以以字节、半字或字方式读写同一个IP地址。同志们,注意了,这个技巧在许多软件开发中定义数据结构时被广泛采用。
为了控制包的发送方式,我们可能会用到如下的这个十分重要的函数来设置套接字选项:
int setsockopt(
SOCKET s, //套接字句柄
int level, //选项level,如SOL_SOCKET
int optname, //选项名,如SO_BROADCAST
const char* optval, //选项值buffer指针
int optlen //选项buffer长度
);
例如,当level为SOL_SOCKET时,我们可以设置布尔型选项SO_BROADCAST从而控制套接字是否传送和接收广播消息。
下面的代码通过设置IPPROTO_IP level的IP_HDRINCL选项为TRUE从而使能程序员亲自处理IP包报头:
//设置 IP 头操作选项
BOOL flag = TRUE;
setsockopt(sd, IPPROTO_IP, IP_HDRINCL, (char*) &flag, sizeof(flag);
下面的函数用于控制套接字:
int ioctlsocket(
SOCKET s,
long cmd, //命令
u_long* argp //命令参数指针
);
如下面的代码让socket接收所有报文(sniffer模式):
u_long iMode = 1;
ioctlsocket(sd, SIO_RCVALL, & iMode); //让 sockRaw 接受所有的数据
2.2Raw Socket发送报文
发送报文的函数为:
int sendto(
SOCKET s, //套接字句柄
const char* buf, //发送缓冲区
int len, //要发送的字节数
int flags, //方式标志
const struct sockaddr* to, //目标地址
int tolen //目标地址长度
);
或
int send(
SOCKET s, //已经建立连接的套接字句柄
const char* buf,
int len,
int flags
);
send()函数的第1个参数只能是一个已经建立连接的套接字句柄,所以这个函数就不再需要目标地址参数输入。
函数的返回值为实际发送的字节数,如果返回SOCKET_ERROR,可以通过WSAGetLastError()获得错误原因。请看下面的示例:
int bwrote = sendto(sd, (char*)send_buf, packet_size, 0, (sockaddr*) &dest,
sizeof(dest));
if (bwrote == SOCKET_ERROR)
{
//…发送失败
if(WSAGetLastError()==…)
{
//…
}
return - 1;
}
else if (bwrote < packet_size)
{
//…发送字节 < 欲发送字节
}
2.3Raw Socket接收报文
接收报文的函数为:
int recvfrom(
SOCKET s, //套接字句柄
char* buf, //接收缓冲区
int len, //缓冲区字节数
int flags, //方式标志
struct sockaddr* from, //源地址
int* fromlen
);
或
int recv(
SOCKET s, //已经建立连接的套接字句柄
char* buf,
int len,
int flags
);
recv()函数的第1个参数只能是一个已经建立连接的套接字句柄,所以这个函数就不再需要源地址参数输入。
函数的返回值为实际接收的字节数,如果返回SOCKET_ERROR,我们可以通过WSAGetLastError()函数获得错误原因。请看下面的示例:
int bread = recvfrom(sd, (char*)recv_buf, packet_size + sizeof(IPHeader), 0,
(sockaddr*) &source, &fromlen);
if (bread == SOCKET_ERROR)
{
//…读失败
if(WSAGetLastError()==WSAEMSGSIZE)
{
//…接收buffer太小
}
return - 1;
}
原始套接字按如下规则接收报文:若接收的报文中协议类型和定义的原始套接字匹配,那么,接收的所有数据拷贝入套接字中;如果套接字绑定了本地地址,那么只有接收数据IP头中对应的目的地址等于本地地址,接收到的数据才拷贝到套接字中;如果套接字定义了远端地址,那么,只有接收数据IP头中对应的源地址与远端地址匹配,接收的数据才拷贝到套接字中。
2.4建立报文
在利用Raw Socket发送报文时,报文的IP头、TCP头、UDP头等需要程序员亲自赋值,从而达到极大的灵活性。下面的程序利用Raw Socket发送TCP报文,并完全手工建立报头:
int sendTcp(unsigned short desPort, unsigned long desIP)
{
WSADATA WSAData;
SOCKET sock;
SOCKADDR_IN addr_in;
IPHEADER ipHeader;
TCPHEADER tcpHeader;
PSDHEADER psdHeader;
if (SOCKET_ERROR == nRetCode)
{
printf("BIND Error!%d\n", WSAGetLastError());
}
其中使用的struct sockaddr_in(即SOCKADDR_IN)为:
struct sockaddr_in
{
unsigned short sin_family;
unsigned short int sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[8];
}
而bind()函数第二个参数的struct sockaddr类型定义为:
struct sockaddr
{
unisgned short as_family;
char sa_data[14];
};
实际上,bind()函数采用struct sockaddr是为了考虑兼容性,最终struct sockaddr和struct sockaddr_in的内存占用是等同的。struct sockaddr_in中的struct in_addr成员占用4个字节,为32位的IP地址,定义为:
typedef struct in_addr
{
union
{
struct
{
u_char s_b1, s_b2, s_b3, s_b4;
} S_un_b;
struct
{
u_short s_w1, s_w2;
} S_un_w;
u_long S_addr;
}
S_un;
} IN_ADDR, *PIN_ADDR, FAR *LPIN_ADDR;
把32位的IP地址定义为上述联合体将使用户可以以字节、半字或字方式读写同一个IP地址。同志们,注意了,这个技巧在许多软件开发中定义数据结构时被广泛采用。
为了控制包的发送方式,我们可能会用到如下的这个十分重要的函数来设置套接字选项:
int setsockopt(
SOCKET s, //套接字句柄
int level, //选项level,如SOL_SOCKET
int optname, //选项名,如SO_BROADCAST
const char* optval, //选项值buffer指针
int optlen //选项buffer长度
);
例如,当level为SOL_SOCKET时,我们可以设置布尔型选项SO_BROADCAST从而控制套接字是否传送和接收广播消息。
下面的代码通过设置IPPROTO_IP level的IP_HDRINCL选项为TRUE从而使能程序员亲自处理IP包报头:
//设置 IP 头操作选项
BOOL flag = TRUE;
setsockopt(sd, IPPROTO_IP, IP_HDRINCL, (char*) &flag, sizeof(flag);
下面的函数用于控制套接字:
int ioctlsocket(
SOCKET s,
long cmd, //命令
u_long* argp //命令参数指针
);
如下面的代码让socket接收所有报文(sniffer模式):
u_long iMode = 1;
ioctlsocket(sd, SIO_RCVALL, & iMode); //让 sockRaw 接受所有的数据
2.2Raw Socket发送报文
发送报文的函数为:
int sendto(
SOCKET s, //套接字句柄
const char* buf, //发送缓冲区
int len, //要发送的字节数
int flags, //方式标志
const struct sockaddr* to, //目标地址
int tolen //目标地址长度
);
或
int send(
SOCKET s, //已经建立连接的套接字句柄
const char* buf,
int len,
int flags
);
send()函数的第1个参数只能是一个已经建立连接的套接字句柄,所以这个函数就不再需要目标地址参数输入。
函数的返回值为实际发送的字节数,如果返回SOCKET_ERROR,可以通过WSAGetLastError()获得错误原因。请看下面的示例:
int bwrote = sendto(sd, (char*)send_buf, packet_size, 0, (sockaddr*) &dest,
sizeof(dest));
if (bwrote == SOCKET_ERROR)
{
//…发送失败
if(WSAGetLastError()==…)
{
//…
}
return - 1;
}
else if (bwrote < packet_size)
{
//…发送字节 < 欲发送字节
}
2.3Raw Socket接收报文
接收报文的函数为:
int recvfrom(
SOCKET s, //套接字句柄
char* buf, //接收缓冲区
int len, //缓冲区字节数
int flags, //方式标志
struct sockaddr* from, //源地址
int* fromlen
);
或
int recv(
SOCKET s, //已经建立连接的套接字句柄
char* buf,
int len,
int flags
);
recv()函数的第1个参数只能是一个已经建立连接的套接字句柄,所以这个函数就不再需要源地址参数输入。
函数的返回值为实际接收的字节数,如果返回SOCKET_ERROR,我们可以通过WSAGetLastError()函数获得错误原因。请看下面的示例:
int bread = recvfrom(sd, (char*)recv_buf, packet_size + sizeof(IPHeader), 0,
(sockaddr*) &source, &fromlen);
if (bread == SOCKET_ERROR)
{
//…读失败
if(WSAGetLastError()==WSAEMSGSIZE)
{
//…接收buffer太小
}
return - 1;
}
原始套接字按如下规则接收报文:若接收的报文中协议类型和定义的原始套接字匹配,那么,接收的所有数据拷贝入套接字中;如果套接字绑定了本地地址,那么只有接收数据IP头中对应的目的地址等于本地地址,接收到的数据才拷贝到套接字中;如果套接字定义了远端地址,那么,只有接收数据IP头中对应的源地址与远端地址匹配,接收的数据才拷贝到套接字中。
2.4建立报文
在利用Raw Socket发送报文时,报文的IP头、TCP头、UDP头等需要程序员亲自赋值,从而达到极大的灵活性。下面的程序利用Raw Socket发送TCP报文,并完全手工建立报头:
int sendTcp(unsigned short desPort, unsigned long desIP)
{
WSADATA WSAData;
SOCKET sock;
SOCKADDR_IN addr_in;
IPHEADER ipHeader;
TCPHEADER tcpHeader;
PSDHEADER psdHeader;
char szSendBuf[MAX_LEN] = { 0 };
BOOL flag;
int rect, nTimeOver;
BOOL flag;
int rect, nTimeOver;
if (WSAStartup(MAKEWORD(2, 2), &WSAData) != 0)
{
printf("WSAStartup Error!\n");
return false;
}
{
printf("WSAStartup Error!\n");
return false;
}
if ((sock = WSASocket(AF_INET, SOCK_RAW, IPPROTO_RAW, NULL, 0,
WSA_FLAG_OVERLAPPED)) == INVALID_SOCKET)
{
printf("Socket Setup Error!\n");
return false;
}
flag = true;
if (setsockopt(sock, IPPROTO_IP, IP_HDRINCL, (char*) &flag, sizeof(flag)) ==
SOCKET_ERROR)
{
printf("setsockopt IP_HDRINCL error!\n");
return false;
}
WSA_FLAG_OVERLAPPED)) == INVALID_SOCKET)
{
printf("Socket Setup Error!\n");
return false;
}
flag = true;
if (setsockopt(sock, IPPROTO_IP, IP_HDRINCL, (char*) &flag, sizeof(flag)) ==
SOCKET_ERROR)
{
printf("setsockopt IP_HDRINCL error!\n");
return false;
}
nTimeOver = 1000;
if (setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO, (char*) &nTimeOver, sizeof
(nTimeOver)) == SOCKET_ERROR)
{
printf("setsockopt SO_SNDTIMEO error!\n");
return false;
}
addr_in.sin_family = AF_INET;
addr_in.sin_port = htons(desPort);
addr_in.sin_addr.S_un.S_addr = inet_addr(desIP);
if (setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO, (char*) &nTimeOver, sizeof
(nTimeOver)) == SOCKET_ERROR)
{
printf("setsockopt SO_SNDTIMEO error!\n");
return false;
}
addr_in.sin_family = AF_INET;
addr_in.sin_port = htons(desPort);
addr_in.sin_addr.S_un.S_addr = inet_addr(desIP);
//填充IP报头
ipHeader.h_verlen = (4 << 4 | sizeof(ipHeader) / sizeof(unsigned long));
// ipHeader.tos=0;
ipHeader.total_len = htons(sizeof(ipHeader) + sizeof(tcpHeader));
ipHeader.ident = 1;
ipHeader.frag_and_flags = 0;
ipHeader.ttl = 128;
ipHeader.proto = IPPROTO_TCP;
ipHeader.checksum = 0;
ipHeader.sourceIP = inet_addr("localhost");
ipHeader.destIP = desIP;
ipHeader.h_verlen = (4 << 4 | sizeof(ipHeader) / sizeof(unsigned long));
// ipHeader.tos=0;
ipHeader.total_len = htons(sizeof(ipHeader) + sizeof(tcpHeader));
ipHeader.ident = 1;
ipHeader.frag_and_flags = 0;
ipHeader.ttl = 128;
ipHeader.proto = IPPROTO_TCP;
ipHeader.checksum = 0;
ipHeader.sourceIP = inet_addr("localhost");
ipHeader.destIP = desIP;
//填充TCP报头
tcpHeader.th_dport = htons(desPort);
tcpHeader.th_sport = htons(SOURCE_PORT); //源端口号
tcpHeader.th_seq = htonl(0x12345678);
tcpHeader.th_ack = 0;
tcpHeader.th_lenres = (sizeof(tcpHeader) / 4 << 4 | 0);
tcpHeader.th_flag = 2; //标志位探测,2是SYN
tcpHeader.th_win = htons(512);
tcpHeader.th_urp = 0;
tcpHeader.th_sum = 0;
tcpHeader.th_dport = htons(desPort);
tcpHeader.th_sport = htons(SOURCE_PORT); //源端口号
tcpHeader.th_seq = htonl(0x12345678);
tcpHeader.th_ack = 0;
tcpHeader.th_lenres = (sizeof(tcpHeader) / 4 << 4 | 0);
tcpHeader.th_flag = 2; //标志位探测,2是SYN
tcpHeader.th_win = htons(512);
tcpHeader.th_urp = 0;
tcpHeader.th_sum = 0;
psdHeader.saddr = ipHeader.sourceIP;
psdHeader.daddr = ipHeader.destIP;
psdHeader.mbz = 0;
psdHeader.ptcl = IPPROTO_TCP;
psdHeader.tcpl = htons(sizeof(tcpHeader));
psdHeader.daddr = ipHeader.destIP;
psdHeader.mbz = 0;
psdHeader.ptcl = IPPROTO_TCP;
psdHeader.tcpl = htons(sizeof(tcpHeader));
//计算校验和
memcpy(szSendBuf, &psdHeader, sizeof(psdHeader));
memcpy(szSendBuf + sizeof(psdHeader), &tcpHeader, sizeof(tcpHeader));
tcpHeader.th_sum = checksum((unsigned short*)szSendBuf, sizeof(psdHeader) + sizeof
(tcpHeader));
memcpy(szSendBuf, &psdHeader, sizeof(psdHeader));
memcpy(szSendBuf + sizeof(psdHeader), &tcpHeader, sizeof(tcpHeader));
tcpHeader.th_sum = checksum((unsigned short*)szSendBuf, sizeof(psdHeader) + sizeof
(tcpHeader));
memcpy(szSendBuf, &ipHeader, sizeof(ipHeader));
memcpy(szSendBuf + sizeof(ipHeader), &tcpHeader, sizeof(tcpHeader));
memset(szSendBuf + sizeof(ipHeader) + sizeof(tcpHeader), 0, 4);
ipHeader.checksum = checksum((unsigned short*)szSendBuf, sizeof(ipHeader) + sizeof
(tcpHeader));
memcpy(szSendBuf + sizeof(ipHeader), &tcpHeader, sizeof(tcpHeader));
memset(szSendBuf + sizeof(ipHeader) + sizeof(tcpHeader), 0, 4);
ipHeader.checksum = checksum((unsigned short*)szSendBuf, sizeof(ipHeader) + sizeof
(tcpHeader));
memcpy(szSendBuf, &ipHeader, sizeof(ipHeader));
rect = sendto(sock, szSendBuf, sizeof(ipHeader) + sizeof(tcpHeader), 0,
(struct sockaddr*) &addr_in, sizeof(addr_in));
if (rect == SOCKET_ERROR)
{
printf("send error!:%d\n", WSAGetLastError());
return false;
}
else
printf("send ok!\n");
(struct sockaddr*) &addr_in, sizeof(addr_in));
if (rect == SOCKET_ERROR)
{
printf("send error!:%d\n", WSAGetLastError());
return false;
}
else
printf("send ok!\n");
closesocket(sock);
WSACleanup();
WSACleanup();
return rect;
}
}
本文转自 21cnbao 51CTO博客,原文链接:http://blog.51cto.com/21cnbao/120083,如需转载请自行联系原作者