AI炒股轻松赚大钱?Too naive

简介:
本文来自AI新媒体量子位(QbitAI)

让AI代替人类炒股,多么美妙的目标。

机器学习技术能在不需要人类预先编写规则的情况下,让计算机从数据中寻找模式。从机器人到天气预报,再到语言翻译,甚至开车,这项技术驱动着多个领域的进步。

为什么不能用它来搞定金融市场呢?

这种想法,已经引发了投资公司之间的军备竞赛,各家本来就已经非常依赖数学的基金开始争抢他们所能找到的顶尖计算机科学家和统计学家。

这项技术一开始表现还不错。今年业绩最好的两家对冲基金——Quantitative Investment Management LLC和Teza Capital Management LLC今年分别上涨了68%和50%,他们都说能做出这么好的业绩,机器学习功不可没。

然而,在投资上持续全面押注机器学习的公司寥寥无几。

对哈里托诺夫(Michael Kharitonov)来说,基于机器学习建立对冲基金不是件易事:难度是想象中的三倍,耗时是预期的三倍。

“我们基本是屡战屡败。”他说。

哈里托诺夫是Voleon Group的联合创始人,这是首批全面拥抱机器学习的投资公司之一。从他们这些年的挣扎中,可以大致理解其他公司的选择。

92e626adaf0d2cd23ae9babc9fa83957c8232c83

将机器学习用在金融交易中,我们先要清楚:这项技术在其他领域取得的那些成就,在交易上可能并不适用。金融交易是一个更杂乱的环境,模式总是被掩盖着。

哈里托诺夫说,他们一开始就想用机器学习做交易预测,但是“就是不管用”。

哈里托诺夫现年54岁,他还有一位43岁的联合创始人麦考利夫(Jon McAuliffe)。他们分别是计算机和统计学博士,都曾在最古老、最成功的量化投资基金D.E. Shaw Group做研究员。

那个时候,今年时不时登一下首富宝座的贝佐斯还没有创立亚马逊,刚好是哈里托诺夫的上司。

哈里托诺夫和麦考利夫多年来一直坚信,他们学过的机器学习技术天生适用于投资,有着可靠的方法论指导。但他们年轻时,计算机还不够快,可用的数据集还不够大。

到2007年,新数据集和足够厉害的计算机出现了,于是哈里托诺夫和麦考利夫创立了Voleon,用机器学习做投资。公司的名字没什么特别含义,编了这么一个词只是因为域名刚好能注册。

在融资过程中,他们遇到了挑剔的机构投资者。

要知道,机器学习这项技术和量化交易的常用方法有一些不同,它不需要科学家提出假设、写出算法给计算机执行,而是由人类为自己算计提供大量数据,然后让它自己找出模式。

实际上,就是计算机自己写出算法,用来做预测,但问题在于,计算机不会告诉你它是怎么得出这个结果的。

市面上的那些量化基金能够很清晰地解释出自己的算法在做什么,但是Voleon的机器学习算法是怎么想的,只有计算机自己知道。

这种方法固有的神秘性,让Voleon根本无法向潜在投资者解释他们买卖股票的理由。计算机所找出的模式对人类来说太细微了,很难理解。

“很多人都完全不感兴趣,但后来我们终于找到了能理解机器学习潜力的人。”哈里托诺夫说。

63c014cb066a4099b824e0b4d62e7cb5919f74be

2008年,全球市场深陷金融危机之中时,Voleon开始了真实交易。

接下来整整两年,这家公司都在亏钱。2009年市场回暖也无济于事。

Voleon的创始团队坚持按着原来的方向走下去,他们坚信自己在处理机器学习最难的问题之一,要想赚钱,需要先花时间打磨系统。

他们所面对的基本问题,是市场太混乱了。到目前为止,机器学习系统表现很好的领域都有一个共同特征:模式本质上是重复的,于是就更易于辨别,围棋、开车都是如此。

而金融市场有更多噪声,它持续受到新事件的影响,而这些新事件之间的关系,也总是在变化。

市场变幻莫测的本质也就意味着投资者刚刚找出昨天的关联,想要运用它来做投资,它就消失了。在机器学习的其他应用场景里,都没有这样的问题。比如说用机器学习来做语音识别,人类语音的基本性质,基本是不变的。

尽管Voleon的创立在某种意义上讲,是受到了机器学习在其他领域成功案例的激励,但是到了2011年底,Voleon创始人已经抛弃了从其他应用借来的大部分技术。取而代之的是创始人自己为不守规矩的市场定制的系统。

麦考利夫整洁的办公室里,书架上放着《大样本理论要素》、《BDA3》等书籍。哈里托诺夫的办公室里装满了他拆开的电路板,以及好多堆满纸的箱子。

他们面临的一个挑战是,需要使用每秒股票的价格变化,来运行15年的股市模拟。这涉及太字节的数据。Voleon需要在几个小时内模拟完毕,但他们耗时数天甚至数周。

那时候,整个公司有10到12个人。这个团队尝试购买更多的计算力,使用为电脑游戏打造的GPU。但仍然耗时太长。

麦考利夫在办公室里痛苦的度过了好几个月。最终,他攻克了这个问题。2012年7月,Voleon推出第二代平台。

哈里托诺夫说,蛮力的方法没用,标准技术也没用。

a0988ad3fc261c6644a31a3a6e92fd6e03446b12

他们的新交易系统带来了更多的利润,以及更多投资者的兴趣。据一位投资者透露,在旗舰基金2011年出现小幅回升后,Voleon 2012年的业绩是34.9%,2013年是46.3%。

然而,两年之后,Voleon去年遭遇滑铁卢,亏损超过9%。这也引起了部分投资者的担心。

“没什么比回撤更引人深思”,哈里托诺夫说:“去年我们学到了很多”。

今年比去年好。截止今年10月,这家管理着18亿美元资金的公司,其旗舰基金上涨约4.5%。自成立以来,其年化收益率大约是10.5%。

业绩波动、策略复杂……并没有阻止Voleon的发展。这家基金正在扩大投资目标,投资标的不仅限于美国和欧洲的股市,还包括加州大学伯克利分校附近的一座楼。

在机器学习技术的帮助下,Voleon每天交易价值超过10亿美元的股票。在这个过程中,他们对买入或者卖出一只股票的原因,没有丝毫兴趣。

哈里托诺夫说,机器学习系统越是具有预测性,人们就越难理解它要做什么。有理论认为人类思维主要用于处理三个维度的情景,数十个乃至数百个维度的任务则是机器学习系统擅长的领域。这些维度之间的关系,往往是非线性的。

“这并不意味着我们不会考虑发生了什么”,麦考利夫说,Voleon的研究人员会设计“扰动”,来研究各种输入在预测系统中的权重,以及解决过拟合等问题。

Voleon的电脑不仅在财务信息中寻找关系,而且在非财务数据中寻找关系。其中包括卫星图像、航运舱单、信用卡收据、社交媒体情绪等等。这些目标数据,可以帮助寻找某个行业的健康状况或者商品供应的变化。

显然,没有人会透露自己使用了哪种数据,如何进行的评估。Voleon也是一样,谨慎的保护着自己的技术和策略隐私。

这个“神秘”的机制让投资者不安,哈里托诺夫理解这种感受,不过他坚信:电脑犯错的情况要比人类少得多。

“机器学习在财务预测领域的应用还在早期阶段”,他说:“一切才刚刚开始”。

2fa8fbd04ea96425fa4ff44476ee56421f3db0f7

推荐阅读

本文作者:夏乙 允中
原文发布时间:2017-12-12 
相关文章
|
机器学习/深度学习 人工智能
【春节学AI炒股】深度学习引入信号处理技术,轻松分析股票等各种序列数据
把深度学习的最新方法用来做股价预测可不可行?一个探讨路径之一是如何深入把经典的信号处理技术引入到深度学习技术中,用来分析各种序列数据(sequence data),比如股票价格、金融信号等,乃至更为一般的物理、经济、社会等活动的动态信号,抽象出有价值的模式,进而对其进行预测和分析。
2860 0
|
8天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
40 1
|
12天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
13天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
57 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
8天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
35 4
|
18天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
55 10
|
11天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗诊断中的应用与挑战
本文旨在揭示人工智能(AI)技术如何革新医疗诊断领域,提高疾病预测的准确性和效率。通过分析AI在图像识别、数据分析等方面的应用实例,本文将探讨AI技术带来的便利及其面临的伦理和法律问题。文章还将提供代码示例,展示如何使用AI进行疾病诊断的基本过程。
|
18天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。