谷歌推出TFGAN:开源的轻量级生成对抗网络库

简介:
本文来自AI新媒体量子位(QbitAI)

一般情况下,训练一个神经网络要先定义一下损失函数,告诉神经网络输出的值离目标值偏差大概多少。举个例子来说,对于图像分类网络所定义的损失函数来说,一旦网络出现错误的分类结果,比如说把狗标记成了猫,就会得到一个高损失值。

不过,不是所有任务都有那么容易定义的损失函数,尤其是那些涉及到人类感知的,比如说图像压缩或者文本转语音系统。

GAN(Generative Adversarial Networks,生成对抗网络),在图像生成文本,超分辨率,帮助机器人学会抓握,提供解决方案这些应用上都取得了巨大的进步。

不过,理论上和软件工程上的更新不够快,跟不上GAN的更新的节奏。


 一段生成模型不断进化的视频

上面的视频可以看出,这个生成模型刚开始只能产生杂乱的噪音,但是最后生成了比较清晰的MNIST数字。

为了让大家更容易地训练和评价GAN,我们提供TFGAN(轻量级GAN库)的源代码。其中包含容易上手的案例,可以充分地展现出TFGAN的表现张力和灵活性。我们还附上了一个示范教程,里面提到了高级的API端口怎么样能快速地用你的数据来训练模型。

 对抗损失对于图像压缩的效果。

顶层是ImageNet数据集里的图,中间那层是传统损失训练出来的图像压缩神经网络压缩和解压后的效果,底层是GAN损失和传统损失一起训练的神经网络效果。可以看得出来,底层的图边缘更锐利,细节更丰富,虽然和原图还是有一定的差距。

当使用端对端的语音合成TacotronTTS网络时,GAN可以增加部分真实的声音特性。如下图所示。

 大多文本转语音(TTS)网络产生的过平滑的声谱图

TacotronTTS可以有效减少生成音频的人工痕迹,出来的语音更真实自然(具体参考,https://arxiv.org/abs/1703.10135)。

TFGAN支持多种主流的实验方法。既有简单的可涵盖大部分GAN案例的函数(只要几行代码,开发者就可以拿自己的数据直接建模了),也有设计独立模块化的特殊GAN函数,你可以随意地组合自己需要的函数,损失、评估、特征、训练函数。

同时,TFGAN也支持搭配其他架构,或者原始的TensorFlow代码。使用了TFGAN搭建的GAN模型,以后底层架构的优化会更加方便。另外,也有大量的已经预置的损失函数或特征函数供开发者选择,不用再花大量时间自己去写。最最最重要的是代码已经被反复测试过了,开发者不用再担心GAN库数据上的错误。

最后,附TFGAN链接:
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/gan

原文链接:
https://opensource.googleblog.com/2017/12/tfgan-lightweight-library-for-generative-adversarial-networks.html

本文作者:Root 
原文发布时间:2017-12-13 
相关文章
|
1月前
|
机器学习/深度学习
NeurIPS 2024:标签噪声下图神经网络有了首个综合基准库,还开源
NoisyGL是首个针对标签噪声下图神经网络(GLN)的综合基准库,由浙江大学和阿里巴巴集团的研究人员开发。该基准库旨在解决现有GLN研究中因数据集选择、划分及预处理技术差异导致的缺乏统一标准问题,提供了一个公平、用户友好的平台,支持多维分析,有助于深入理解GLN方法在处理标签噪声时的表现。通过17种代表性方法在8个常用数据集上的广泛实验,NoisyGL揭示了多个关键发现,推动了GLN领域的进步。尽管如此,NoisyGL目前主要适用于同质图,对异质图的支持有限。
41 7
|
1月前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
1月前
|
安全 Linux 网络安全
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息。本文分三部分介绍 nmap:基本原理、使用方法及技巧、实际应用及案例分析。通过学习 nmap,您可以更好地了解网络拓扑和安全状况,提升网络安全管理和渗透测试能力。
148 5
|
2月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
46 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
2月前
|
机器学习/深度学习 编解码 算法
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
MobileNetV3是谷歌为移动设备优化的神经网络模型,通过神经架构搜索和新设计计算块提升效率和精度。它引入了h-swish激活函数和高效的分割解码器LR-ASPP,实现了移动端分类、检测和分割的最新SOTA成果。大模型在ImageNet分类上比MobileNetV2更准确,延迟降低20%;小模型准确度提升,延迟相当。
85 1
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
|
1月前
|
网络协议 Unix Linux
精选2款C#/.NET开源且功能强大的网络通信框架
精选2款C#/.NET开源且功能强大的网络通信框架
|
2月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
61 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
11天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
51 17
|
22天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章