2 索引读取阶段
当希望通过一个DocId得到Doc的全部内容,那么就需要对fdx/fdt文件进行读操作了。具体的代码在CompressingStoredFieldsReader类里面。与CompressingStoredFieldsWriter一样,这些操作都是建立在fdx/fdt文件格式理解的基础上。
既然前面有一个比喻:如果fdt是一本书的正文,那么fdx则是书的目录。那么通过docID来得到doc全部内容的这个过程则是需要两个文件联合起来发挥作用。
具体的过程如下:
第一步:在CompressingStoredFieldsIndexReader的构造函数中加载所有的”目录信息”
第二步:确定docID所在Segment,由于starts数组记录了每个Segment的docID的起始值,所以通过二分查找,很快就能定位到对应的Segment.并进入到相应的SegmentReader去读取doc内容。
通过docID确定所在Segment
第三步:确定docID所在的Block
第四步:确定docID所在的Chunk
第五步:根据docID确定的Chunk找到chunk在fdt文件中的起始位置
第六步:读取fdt文件中的Chunk信息,通过<DocLengths>和给定的docID确定整个Chunk存储的所有doc的总长度totalLength和从baseDoc到docID的doc长度length。并用LZ4解压Chunk中的doc内容。当然,并不需要整个chunk的doc都解压,只需要解压到length的长度就可以了。
得到length和totalLength后,就可以解压了。并读取解压后文本的内容,生成Document
这样的话,就通过docID得到了存储到索引中document的所有内容了。
3 总结
fdx/fdt文件不涉及Lucene的核心,只是对索引内容本身的读写操作。而且fdx/fdt的文件格式相当简单明了:fdt文件存储着一个个的Chunk;fdx文件存储一个个的Block,每个Block管理着一批Chunk 。
fdt/fdx在Lucene中最有价值的地方在于:
1、给定一个DocId,如何快速还原一个Document。
2、索引内容本身的实时压缩/解压,也就是LZ4算法。这其实是为上一条服务。
3、通过SPI机制,允许用户自定义存储格式。这是Lucene在架构上面的进步。
通过这个过程的解析,也能了解到通过docID读取到document需要完成Segment、Block、Chunk、document四级查询。Segment、Block、Chunk的查找都是二分查找,速度很快,但是Chunk中定位document则是顺序查找,所以Chunk的大小直接影响着读取的性能。
本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6395215.html,如需转载请自行联系原作者