【OpenCV学习】利用HandVu进行手部动作识别分析

简介:

程序的流程是:
1)先进行配置文件的读取和配置参数的载入
2)初始化摄像头或者指定的视频文件
3)显示屏显提示
4)设定采集图像大小
5)获取一帧
6)初始化要分析的图像大小
7)装载参数
8)开始识别
9)设置识别的覆盖区级别
10)设置同步/异步识别
11)设置鼠标事件的回调参数,若有鼠标事件确定区域大小
12)打开相关窗口,进入主处理循环,显示处理过的帧,并且时刻准备相应键盘事件。

/**
* HandVu - a library for computer vision-based hand gesture
* recognition.
* Copyright (C) 2004 Mathias Kolsch, matz@cs.ucsb.edu
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, 
* Boston, MA  02111-1307, USA.
*
* $Id: hv_OpenCV.cpp,v 1.15 2006/01/03 21:44:15 matz Exp $
**/

#ifdef WIN32
#include <windows.h>
#endif

#include <stdio.h>
#include <cv.h>
#include <highgui.h>
#include <ctype.h>
#include <time.h>

#include "HandVu.h"


IplImage *capture_image = 0;
IplImage *display_image = 0;

bool async_processing = false;
int num_async_bufs = 30;
IplImage *m_async_image = 0;
int m_async_bufID = -1;
bool sync_display = true;

CvPoint origin;
int select_object = 0;
int sel_area_left=0, sel_area_top=0, sel_area_right=0, sel_area_bottom=0;
bool correct_distortion = false;


void OnMouse( int event, int x, int y, int /*flags*/, void* /*params*/ )
{
  if( !capture_image )
    return;

  if( capture_image->origin )
    y = capture_image->height - y;

  if( select_object )
  {
    sel_area_left = MIN(x,origin.x);
    sel_area_top = MIN(y,origin.y);
    sel_area_right = sel_area_left + CV_IABS(x - origin.x);
    sel_area_bottom = sel_area_top + CV_IABS(y - origin.y);

    sel_area_left = MAX( sel_area_left, 0 );
    sel_area_top = MAX( sel_area_top, 0 );
    sel_area_right = MIN( sel_area_right, capture_image->width );
    sel_area_bottom = MIN( sel_area_bottom, capture_image->height );

    if( sel_area_right-sel_area_left > 0 && sel_area_bottom-sel_area_top> 0 )
      hvSetDetectionArea(sel_area_left, sel_area_top,
                         sel_area_right, sel_area_bottom);
  }

  switch( event )
  {
  case CV_EVENT_LBUTTONDOWN:
    origin = cvPoint(x,y);
    sel_area_left = sel_area_right = x;
    sel_area_top = sel_area_bottom = y;
    select_object = 1;
    break;
  case CV_EVENT_LBUTTONUP:
    select_object = 0;
    break;
  }
}


void showFrame(IplImage* img, hvAction action)
{
  if (action==HV_DROP_FRAME) {
    // HandVu recommends dropping the frame entirely
    // printf("HandVuFilter: dropping frame/n");
    return;
  } else if (action==HV_SKIP_FRAME) {
    // HandVu recommends displaying the frame, but not doing any further
    // processing on it - keep going
    // printf("HandVuFilter: supposed to skip frame/n");
  } else if (action==HV_PROCESS_FRAME) {
    // full processing was done and is recommended for following steps;
    // keep going
    //printf("HandVuFilter: processed frame/n");
  } else {
    assert(0); // unknown action
  }
  
  hvState state;
  hvGetState(0, state);
  
  cvShowImage( "HandVu", img );
}


void displayCallback(IplImage* img, hvAction action)
{
  if (sync_display) {
    cvCopy(img, display_image);
  } else {
    showFrame(img, action);
  }
}


int main( int argc, char** argv )
{
  CvCapture* capture = 0;

  if (argc<2) {
    printf("you need to specify a conductor file as first argument/n");
    printf("for example: ../config/default.conductor/n");
    return -1;
  }

  string conductor_fname(argv[1]);//声明配置参数的对象
  printf("will load conductor from file:/n%s/n", conductor_fname.c_str());//屏显提示

  /*是否设定特定的摄像头,并初始化摄像头  */
  if( argc == 2 || argc == 3) {
    int num = 0;
    if (argc==3) {
      num = atoi(argv[2]);
    }
    capture = cvCaptureFromCAM( num );
    if (!capture) {
      capture = cvCaptureFromAVI( argv[2] ); 
    }
  }

  if( !capture )
  {
    fprintf(stderr,"Could not initialize capturing through OpenCV./n");
    return -1;
  }

  /* 屏显提示 */
  printf( "Hot keys: /n"
    "/tESC - quit the program/n"
    "/tr - restart the tracking/n"
    "/t0-3 - set the overlay (verbosity) level/n"
    "use the mouse to select the initial detection area/n" );

  //设定采集图像大小
  int p = 0; // according to docs, these calls don't work in OpenCV beta 4 yet
  p = cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH, 640);
  p = cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT, 480);

  //获取一帧
  capture_image = cvQueryFrame( capture );
  if ( !capture_image ) {
    fprintf(stderr,"Could not retrieve image through OpenCV./n");
    return -1;
  }

  /* allocate all the buffers */
  CvSize size = cvGetSize(capture_image);
  hvInitialize(size.width, size.height);//初始化要分析的图像大小
  hvLoadConductor(conductor_fname);//装载参数
  hvStartRecognition();//开始识别
  hvSetOverlayLevel(2);//设置识别的覆盖区级别
  /* 设置同步/异步识别 */
  if (async_processing) {
    hvAsyncSetup(num_async_bufs, displayCallback);
    if (sync_display) display_image = cvCloneImage(capture_image);
  }
  /* 设置鼠标事件的回调参数 */
  cvSetMouseCallback( "HandVu", OnMouse );
  /* 设置窗口 */
  int success = cvNamedWindow( "HandVu", 1 );
  if (success!=1) {
    printf("can't open window - did you compile OpenCV with highgui support?");
    return -1;
  }
  fprintf(stderr, "initialized highgui/n");
    hvStartGestureServer(1394,10);

  for (;;) {
    int c;
    
    if (async_processing) {
      // asynchronous processing in HandVu

      if (sync_display) cvShowImage("HandVu", display_image);
      
      // ------- main library call ---------
      hvAsyncGetImageBuffer(&m_async_image, &m_async_bufID);
      cvCopy(capture_image, m_async_image);
      hvAsyncProcessFrame(m_async_bufID);
      // -------
      
    } else {//In the condition从这个分支走
      // synchronous processing in HandVu
      
      // ------- main library call ---------
      hvAction action = HV_INVALID_ACTION;
      action = hvProcessFrame(capture_image);
      // -------
      
      showFrame(capture_image, action);
      
    }
    
    c = cvWaitKey(10);
    if( c == 27 || c == 'q' )
      break;
    switch( c )
      {
      case 'r':
        hvStopRecognition();
        hvStartRecognition();
        break;
      case '0':
        hvSetOverlayLevel(0);
        break;
      case '1':
        hvSetOverlayLevel(1);
        break;
      case '2':
        hvSetOverlayLevel(2);
        break;
      case '3':
        hvSetOverlayLevel(3);
        break;
      case 'u':
        if (hvCanCorrectDistortion()) {
          correct_distortion = !correct_distortion;
          hvCorrectDistortion(correct_distortion);
        }
        break;
      default:
        ;
      }
    
    // capture next image
    capture_image = cvQueryFrame( capture );
    if ( !capture_image ) {
      fprintf(stderr,"Could not retrieve image through OpenCV./n");
      break;
    }
  }
  
  cvReleaseCapture( &capture );
  cvDestroyWindow("HandVu");

  return 0;
}



本文转自gnuhpc博客园博客,原文链接:http://www.cnblogs.com/gnuhpc/archive/2012/01/16/2323275.html,如需转载请自行联系原作者

相关文章
|
3月前
|
机器学习/深度学习 算法 计算机视觉
基于opencv与mediapipe的民族舞舞蹈动作识别
基于opencv与mediapipe的民族舞舞蹈动作识别
62 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
OpenCV与AI深度学习之常用AI名词解释学习
AGI:Artificial General Intelligence (通用人工智能):是指具备与人类同等或超越人类的智能,能够表现出正常人类所具有的所有智能行为。又被称为强人工智能。
143 2
|
7月前
|
计算机视觉
OpenCV轮廓分析
OpenCV轮廓分析
|
6月前
|
计算机视觉 Python
opencv 处理图像去噪的几种方法学习
OpenCV 提供了多种图像去噪的方法,以下是一些常见的去噪技术以及相应的 Python 代码示例: 均值滤波:使用像素邻域的灰度均值代替该像素的值。
80 0
|
7月前
|
机器学习/深度学习 开发框架 TensorFlow
### 如何系统化学习OpenCV4
### 如何系统化学习OpenCV4
47 0
|
8月前
|
算法 计算机视觉 Python
【OpenCV】-算子(Sobel、Canny、Laplacian)学习
【OpenCV】-算子(Sobel、Canny、Laplacian)学习
272 2
|
8月前
|
存储 计算机视觉
OpenCV—学习基本绘图
OpenCV—学习基本绘图
|
8月前
|
算法 C++ 计算机视觉
Opencv(C++)学习系列---Laplacian拉普拉斯边缘检测算法
Opencv(C++)学习系列---Laplacian拉普拉斯边缘检测算法
373 0
|
3月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
747 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
4月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
62 4