hive和hbase本质区别——hbase本质是OLTP的nosql DB,而hive是OLAP 底层是hdfs,需从已有数据库同步数据到hdfs;hive可以用hbase中的数据,通过hive表映射到hbase表

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介:

对于hbase当前noSql数据库的一种,最常见的应用场景就是采集的网页数据的存储,由于是key-value型数据库,可以再扩展到各种key-value应用场景,如日志信息的存储,对于内容信息不需要完全结构化出来的类CMS应用等。注意hbase针对的仍然是OLTP应用为主

对于hive主要针对的是OLAP应用,注意其底层不是hbase,而是hdfs分布式文件系统,重点是基于一个统一的查询分析层,支撑OLAP应用中的各种关联,分组,聚合类SQL语句。hive一般只用于查询分析统计,而不能是常见的CUD操作,要知道HIVE是需要从已有的数据库或日志进行同步最终入到hdfs文件系统中,当前要做到增量实时同步都相当困难。

和mysql,oracle完全不是相同的应用场景。这个是结构化数据库,针对的更多的是结构化,事务一致性要求高,业务规则逻辑复杂,数据模型复杂的企业信息化类应用等。包括互联网应用中的很多业务系统也需要通过结构化数据库来实现。所以和hbase,hive不是一个层面的东西,不比较。

 

摘自:https://www.zhihu.com/question/21677041

 

其他回答:

作者:yuan daisy
链接:https://www.zhihu.com/question/21677041/answer/78289309
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

1. Hive中的表是纯逻辑表,就只是表的定义等,即表的元数据。Hive本身不存储数据,它完全依赖HDFS和MapReduce。这样就可以将结构化的数据文件映射为为一张数据库表,并提供完整的SQL查询功能,并将SQL语句最终转换为MapReduce任务进行运行。 而HBase表是物理表,适合存放非结构化的数据。

2. Hive是基于MapReduce来处理数据,而MapReduce处理数据是基于行的模式;HBase处理数据是基于列的而不是基于行的模式,适合海量数据的随机访问。

3. HBase的表是疏松的存储的,因此用户可以给行定义各种不同的列;而Hive表是稠密型,即定义多少列,每一行有存储固定列数的数据。

4. Hive使用Hadoop来分析处理数据,而Hadoop系统是批处理系统,因此不能保证处理的低迟延问题;而HBase是近实时系统,支持实时查询。

5. Hive不提供row-level的更新,它适用于大量append-only数据集(如日志)的批任务处理。而基于HBase的查询,支持和row-level的更新。

6. Hive提供完整的SQL实现,通常被用来做一些基于历史数据的挖掘、分析。而HBase不适用与有join,多级索引,表关系复杂的应用场景。

 

 

HBase是个基于HDFS的数据库。Hive是用SQL替代写MR的编程框架,做Hadoop上会把用户提交的SQL语句做语法分析,执行计划等一堆乱七八糟的事后变成MR job提交去跑,返回结果给用户。不然每次都写MR很麻烦的,有这个写个SQL就可以拿到等效的结果,很适合运营童鞋用。 当然Hive也有HBase的Connector,用这个Connnector后可以写SQL查询HBase的数据而不是HDFS,不过一般不这么搞。
 
 

 

Reasons to use Hive on HBase:
A lot of data sitting in HBase due to its usage in a real-time environment, but never used for analysis
Give access to data in HBase usually only queried through MapReduce to people that don’t code (business analysts)
When needing a more flexible storage solution, so that rows can be updated live by either a Hive job or an application and can be seen immediately to the other

Reasons not to do it:
Run SQL queries on HBase to answer live user requests (it’s still a MR job)
Hoping to see interoperability with other SQL analytics systems

Hive can use tables that already exist in HBase or manage its own ones, but they still all reside in the same HBase instance

When using an already existing table, defined as EXTERNAL, you can create multiple Hive tables that point to it

 

 

参考:www.cs.kent.edu/~jin/Cloud12Spring/HbaseHivePig.pptx













本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6483575.html,如需转载请自行联系原作者

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
4月前
|
存储 JSON 关系型数据库
【干货满满】解密 API 数据解析:从 JSON 到数据库存储的完整流程
本文详解电商API开发中JSON数据解析与数据库存储的全流程,涵盖数据提取、清洗、转换及优化策略,结合Python实战代码与主流数据库方案,助开发者构建高效、可靠的数据处理管道。
|
2月前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。
|
2月前
|
人工智能 Java 关系型数据库
使用数据连接池进行数据库操作
使用数据连接池进行数据库操作
72 11
|
3月前
|
存储 数据管理 数据库
数据字典是什么?和数据库、数据仓库有什么关系?
在数据处理中,你是否常困惑于字段含义、指标计算或数据来源?数据字典正是解答这些问题的关键工具,它清晰定义数据的名称、类型、来源、计算方式等,服务于开发者、分析师和数据管理者。本文详解数据字典的定义、组成及其与数据库、数据仓库的关系,助你夯实数据基础。
数据字典是什么?和数据库、数据仓库有什么关系?
|
3月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL数据库的WAL日志与数据写入的过程
PostgreSQL中的WAL(预写日志)是保证数据完整性的关键技术。在数据修改前,系统会先将日志写入WAL,确保宕机时可通过日志恢复数据。它减少了磁盘I/O,提升了性能,并支持手动切换日志文件。WAL文件默认存储在pg_wal目录下,采用16进制命名规则。此外,PostgreSQL提供pg_waldump工具解析日志内容。
230 0
|
5月前
|
存储 SQL Java
数据存储使用文件还是数据库,哪个更合适?
数据库和文件系统各有优劣:数据库读写性能较低、结构 rigid,但具备计算能力和数据一致性保障;文件系统灵活易管理、读写高效,但缺乏计算能力且无法保证一致性。针对仅需高效存储与灵活管理的场景,文件系统更优,但其计算短板可通过开源工具 SPL(Structured Process Language)弥补。SPL 提供独立计算语法及高性能文件格式(如集文件、组表),支持复杂计算与多源混合查询,甚至可替代数据仓库。此外,SPL 易集成、支持热切换,大幅提升开发运维效率,是后数据库时代文件存储的理想补充方案。
|
8月前
|
XML 存储 分布式计算
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
772 70
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
464 6
|
SQL 分布式计算 监控
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
187 3

热门文章

最新文章

下一篇
开通oss服务