高可用Hadoop平台-应用JAR部署

简介:

1.概述

  今天在观察集群时,发现NN节点的负载过高,虽然对NN节点的资源进行了调整,同时对NN节点上的应用程序进行重新打包调整,负载问题暂时得到缓解。但是,我想了想,这样也不是长久之计。通过这个问题,我重新分析了一下以前应用部署架构图,发现了一些问题的所在,之前的部署架构是,将打包的应用直接部署在Hadoop集群上,虽然这没什么不好,但是我们分析得知,若是将应用部署在DN节点,那么时间长了应用程序会不会抢占DN节点的资源,那么如果我们部署在NN节点上,又对NN节点计算任务时造成影响,于是,经过讨论后,我们觉得应用程序不应该对Hadoop集群造成干扰,他们应该是属于一种松耦合的关系,所有的应用应该部署在一个AppServer集群上。下面,我就为大家介绍今天的内容。

2.应用部署剖析

  由于之前的应用程序直接部署在Hadoop集群上,这堆集群或多或少造成了一些影响。我们知道在本地开发Hadoop应用的时候,都可以直接运行相关Hadoop代码,这里我们只用到了Hadoop的HDFS的地址,那我们为什么不能直接将应用单独部署呢?其实本地开发就可以看作是AppServer集群的一个节点,借助这个思路,我们将应用单独打包后,部署在一个独立的AppServer集群,只需要用到Hadoop集群的HDFS地址即可,这里需要注意的是,保证AppServer集群与Hadoop集群在同一个网段。下面我给出解耦后应用部署架构图,如下图所示:

  从图中我们可以看出,AppServer集群想Hadoop集群提交作业,两者之间的数据交互,只需用到Hadoop的HDFS地址和Java API。在AppServer上的应用不会影响到Hadoop集群的正常运行。

3.示例

  下面为大家演示相关示例,以WordCountV2为例子,代码如下所示:

复制代码
package cn.hadoop.hdfs.main;

import java.io.IOException;
import java.util.Random;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import cn.hadoop.hdfs.util.SystemConfig;

/**
 * @Date Apr 23, 2015
 *
 * @Author dengjie
 *
 * @Note Wordcount的例子是一个比较经典的mapreduce例子,可以叫做Hadoop版的hello world。
 *       它将文件中的单词分割取出,然后shuffle,sort(map过程),接着进入到汇总统计
 *       (reduce过程),最后写道hdfs中。基本流程就是这样。
 */
public class WordCountV2 {

    private static Logger logger = LoggerFactory.getLogger(WordCountV2.class);
    private static Configuration conf;

    /**
     * 设置高可用集群连接信息
     */
    static {
        String tag = SystemConfig.getProperty("dev.tag");
        String[] hosts = SystemConfig.getPropertyArray(tag + ".hdfs.host", ",");
        conf = new Configuration();
        conf.set("fs.defaultFS", "hdfs://cluster1");
        conf.set("dfs.nameservices", "cluster1");
        conf.set("dfs.ha.namenodes.cluster1", "nna,nns");
        conf.set("dfs.namenode.rpc-address.cluster1.nna", hosts[0]);
        conf.set("dfs.namenode.rpc-address.cluster1.nns", hosts[1]);
        conf.set("dfs.client.failover.proxy.provider.cluster1",
                "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider");    
    }

    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        /**
         * 源文件:a b b
         * 
         * map之后:
         * 
         * a 1
         * 
         * b 1
         * 
         * b 1
         */
        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());// 整行读取
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken());// 按空格分割单词
                context.write(word, one);// 每次统计出来的单词+1
            }
        }
    }

    /**
     * reduce之前:
     * 
     * a 1
     * 
     * b 1
     * 
     * b 1
     * 
     * reduce之后:
     * 
     * a 1
     * 
     * b 2
     */
    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException,
                InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();// 分组累加
            }
            result.set(sum);
            context.write(key, result);// 按相同的key输出
        }
    }

    public static void main(String[] args) {
        try {
            if (args.length < 1) {
                logger.info("args length is 0");
                run("hello.txt");
            } else {
                logger.info("args length is not 0");
                run(args[0]);
            }
        } catch (Exception ex) {
            ex.printStackTrace();
            logger.error(ex.getMessage());
        }
    }

    private static void run(String name) throws Exception {
        long randName = new Random().nextLong();// 重定向输出目录
        logger.info("output name is [" + randName + "]");

        Job job = Job.getInstance(conf);
        job.setJarByClass(WordCountV2.class);
        job.setMapperClass(TokenizerMapper.class);// 指定Map计算的类
        job.setCombinerClass(IntSumReducer.class);// 合并的类
        job.setReducerClass(IntSumReducer.class);// Reduce的类
        job.setOutputKeyClass(Text.class);// 输出Key类型
        job.setOutputValueClass(IntWritable.class);// 输出值类型

        String sysInPath = SystemConfig.getProperty("hdfs.input.path.v2");
        String realInPath = String.format(sysInPath, name);
        String syOutPath = SystemConfig.getProperty("hdfs.output.path.v2");
        String realOutPath = String.format(syOutPath, randName);

        FileInputFormat.addInputPath(job, new Path(realInPath));// 指定输入路径
        FileOutputFormat.setOutputPath(job, new Path(realOutPath));// 指定输出路径

        System.exit(job.waitForCompletion(true) ? 0 : 1);// 执行完MR任务后退出应用
    }
}
复制代码

  在本地IDE中运行正常,截图如下所示:

4.应用打包部署

  然后,我们将WordCountV2应用打包后部署到AppServer1节点,这里由于工程是基于Maven结构的,我们使用Maven命令直接打包,打包命令如下所示:

mvn assembly:assembly

  然后,我们使用scp命令将打包后的JAR文件上传到AppServer1节点,上传命令如下所示:

scp hadoop-ubas-1.0.0-jar-with-dependencies.jar hadoop@apps:~/

  接着,我们在AppServer1节点上运行我们打包好的应用,运行命令如下所示:

java -jar hadoop-ubas-1.0.0-jar-with-dependencies.jar

  但是,这里却很无奈的报错了,错误信息如下所示:

复制代码
java.io.IOException: No FileSystem for scheme: hdfs
    at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2584)
    at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2591)
    at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:91)
    at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2630)
    at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2612)
    at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:370)
    at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:169)
    at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:354)
    at org.apache.hadoop.fs.Path.getFileSystem(Path.java:296)
    at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.addInputPath(FileInputFormat.java:518)
    at cn.hadoop.hdfs.main.WordCountV2.run(WordCountV2.java:134)
    at cn.hadoop.hdfs.main.WordCountV2.main(WordCountV2.java:108)
2015-05-10 23:31:21 ERROR [WordCountV2.main] - No FileSystem for scheme: hdfs
复制代码

5.错误分析

  首先,我们来定位下问题原因,我将打包后的JAR在Hadoop集群上运行,是可以完成良好的运行,并计算出结果信息的,为什么在非Hadoop集群却报错呢?难道是这种架构方式不对?经过仔细的分析错误信息,和我们的Maven依赖环境,问题原因定位出来了,这里我们使用了Maven的assembly插件来打包应用。只是因为当我们使用Maven组件时,它将所有的JARS合并到一个文件中,所有的META-INFO/services/org.apache.hadoop.fs.FileSystem被互相覆盖,仅保留最后一个加入的,在这种情况下FileSystem的列表从Hadoop-Commons重写到Hadoop-HDFS的列表,而DistributedFileSystem就会找不到相应的声明信息。因而,就会出现上述错误信息。在原因找到后,我们剩下的就是去找到解决方法,这里通过分析,我找到的解决办法如下,在Loading相关Hadoop的Configuration时,我们设置相关FileSystem即可,配置代码如下所示:

conf.set("fs.hdfs.impl", org.apache.hadoop.hdfs.DistributedFileSystem.class.getName());
conf.set("fs.file.impl", org.apache.hadoop.fs.LocalFileSystem.class.getName());

  接下来,我们重新打包应用,然后在AppServer1节点运行该应用,运行正常,并正常统计结果,运行日志如下所示:

复制代码
[hadoop@apps example]$ java -jar hadoop-ubas-1.0.0-jar-with-dependencies.jar 
2015-05-11 00:08:15 INFO  [SystemConfig.main] - Successfully loaded default properties.
2015-05-11 00:08:15 INFO  [WordCountV2.main] - args length is 0
2015-05-11 00:08:15 INFO  [WordCountV2.main] - output name is [6876390710620561863]
2015-05-11 00:08:16 WARN  [NativeCodeLoader.main] - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2015-05-11 00:08:17 INFO  [deprecation.main] - session.id is deprecated. Instead, use dfs.metrics.session-id
2015-05-11 00:08:17 INFO  [JvmMetrics.main] - Initializing JVM Metrics with processName=JobTracker, sessionId=
2015-05-11 00:08:17 WARN  [JobSubmitter.main] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2015-05-11 00:08:17 INFO  [FileInputFormat.main] - Total input paths to process : 1
2015-05-11 00:08:18 INFO  [JobSubmitter.main] - number of splits:1
2015-05-11 00:08:18 INFO  [JobSubmitter.main] - Submitting tokens for job: job_local519626586_0001
2015-05-11 00:08:18 INFO  [Job.main] - The url to track the job: http://localhost:8080/
2015-05-11 00:08:18 INFO  [Job.main] - Running job: job_local519626586_0001
2015-05-11 00:08:18 INFO  [LocalJobRunner.Thread-14] - OutputCommitter set in config null
2015-05-11 00:08:18 INFO  [LocalJobRunner.Thread-14] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2015-05-11 00:08:18 INFO  [LocalJobRunner.Thread-14] - Waiting for map tasks
2015-05-11 00:08:18 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - Starting task: attempt_local519626586_0001_m_000000_0
2015-05-11 00:08:18 INFO  [Task.LocalJobRunner Map Task Executor #0] -  Using ResourceCalculatorProcessTree : [ ]
2015-05-11 00:08:18 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Processing split: hdfs://cluster1/home/hdfs/test/in/hello.txt:0+24
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - (EQUATOR) 0 kvi 26214396(104857584)
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - mapreduce.task.io.sort.mb: 100
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - soft limit at 83886080
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - bufstart = 0; bufvoid = 104857600
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - kvstart = 26214396; length = 6553600
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2015-05-11 00:08:19 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - 
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Starting flush of map output
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Spilling map output
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - bufstart = 0; bufend = 72; bufvoid = 104857600
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - kvstart = 26214396(104857584); kvend = 26214352(104857408); length = 45/6553600
2015-05-11 00:08:19 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Finished spill 0
2015-05-11 00:08:19 INFO  [Task.LocalJobRunner Map Task Executor #0] - Task:attempt_local519626586_0001_m_000000_0 is done. And is in the process of committing
2015-05-11 00:08:19 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - map
2015-05-11 00:08:19 INFO  [Task.LocalJobRunner Map Task Executor #0] - Task 'attempt_local519626586_0001_m_000000_0' done.
2015-05-11 00:08:19 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - Finishing task: attempt_local519626586_0001_m_000000_0
2015-05-11 00:08:19 INFO  [LocalJobRunner.Thread-14] - map task executor complete.
2015-05-11 00:08:19 INFO  [LocalJobRunner.Thread-14] - Waiting for reduce tasks
2015-05-11 00:08:19 INFO  [LocalJobRunner.pool-6-thread-1] - Starting task: attempt_local519626586_0001_r_000000_0
2015-05-11 00:08:19 INFO  [Task.pool-6-thread-1] -  Using ResourceCalculatorProcessTree : [ ]
2015-05-11 00:08:19 INFO  [ReduceTask.pool-6-thread-1] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@16769723
2015-05-11 00:08:19 INFO  [MergeManagerImpl.pool-6-thread-1] - MergerManager: memoryLimit=177399392, maxSingleShuffleLimit=44349848, mergeThreshold=117083600, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2015-05-11 00:08:19 INFO  [EventFetcher.EventFetcher for fetching Map Completion Events] - attempt_local519626586_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2015-05-11 00:08:19 INFO  [LocalFetcher.localfetcher#1] - localfetcher#1 about to shuffle output of map attempt_local519626586_0001_m_000000_0 decomp: 50 len: 54 to MEMORY
2015-05-11 00:08:19 INFO  [InMemoryMapOutput.localfetcher#1] - Read 50 bytes from map-output for attempt_local519626586_0001_m_000000_0
2015-05-11 00:08:19 INFO  [MergeManagerImpl.localfetcher#1] - closeInMemoryFile -> map-output of size: 50, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->50
2015-05-11 00:08:19 INFO  [EventFetcher.EventFetcher for fetching Map Completion Events] - EventFetcher is interrupted.. Returning
2015-05-11 00:08:19 INFO  [LocalJobRunner.pool-6-thread-1] - 1 / 1 copied.
2015-05-11 00:08:19 INFO  [MergeManagerImpl.pool-6-thread-1] - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2015-05-11 00:08:19 INFO  [Merger.pool-6-thread-1] - Merging 1 sorted segments
2015-05-11 00:08:19 INFO  [Merger.pool-6-thread-1] - Down to the last merge-pass, with 1 segments left of total size: 46 bytes
2015-05-11 00:08:19 INFO  [MergeManagerImpl.pool-6-thread-1] - Merged 1 segments, 50 bytes to disk to satisfy reduce memory limit
2015-05-11 00:08:19 INFO  [MergeManagerImpl.pool-6-thread-1] - Merging 1 files, 54 bytes from disk
2015-05-11 00:08:19 INFO  [MergeManagerImpl.pool-6-thread-1] - Merging 0 segments, 0 bytes from memory into reduce
2015-05-11 00:08:19 INFO  [Merger.pool-6-thread-1] - Merging 1 sorted segments
2015-05-11 00:08:19 INFO  [Merger.pool-6-thread-1] - Down to the last merge-pass, with 1 segments left of total size: 46 bytes
2015-05-11 00:08:19 INFO  [LocalJobRunner.pool-6-thread-1] - 1 / 1 copied.
2015-05-11 00:08:19 INFO  [deprecation.pool-6-thread-1] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2015-05-11 00:08:19 INFO  [Job.main] - Job job_local519626586_0001 running in uber mode : false
2015-05-11 00:08:19 INFO  [Job.main] -  map 100% reduce 0%
2015-05-11 00:08:19 INFO  [Task.pool-6-thread-1] - Task:attempt_local519626586_0001_r_000000_0 is done. And is in the process of committing
2015-05-11 00:08:19 INFO  [LocalJobRunner.pool-6-thread-1] - 1 / 1 copied.
2015-05-11 00:08:19 INFO  [Task.pool-6-thread-1] - Task attempt_local519626586_0001_r_000000_0 is allowed to commit now
2015-05-11 00:08:19 INFO  [FileOutputCommitter.pool-6-thread-1] - Saved output of task 'attempt_local519626586_0001_r_000000_0' to hdfs://cluster1/home/hdfs/test/out/6876390710620561863/_temporary/0/task_local519626586_0001_r_000000
2015-05-11 00:08:19 INFO  [LocalJobRunner.pool-6-thread-1] - reduce > reduce
2015-05-11 00:08:19 INFO  [Task.pool-6-thread-1] - Task 'attempt_local519626586_0001_r_000000_0' done.
2015-05-11 00:08:19 INFO  [LocalJobRunner.pool-6-thread-1] - Finishing task: attempt_local519626586_0001_r_000000_0
2015-05-11 00:08:19 INFO  [LocalJobRunner.Thread-14] - reduce task executor complete.
2015-05-11 00:08:20 INFO  [Job.main] -  map 100% reduce 100%
2015-05-11 00:08:20 INFO  [Job.main] - Job job_local519626586_0001 completed successfully
2015-05-11 00:08:20 INFO  [Job.main] - Counters: 38
    File System Counters
        FILE: Number of bytes read=77813788
        FILE: Number of bytes written=78928898
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=48
        HDFS: Number of bytes written=24
        HDFS: Number of read operations=13
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=4
    Map-Reduce Framework
        Map input records=2
        Map output records=12
        Map output bytes=72
        Map output materialized bytes=54
        Input split bytes=108
        Combine input records=12
        Combine output records=6
        Reduce input groups=6
        Reduce shuffle bytes=54
        Reduce input records=6
        Reduce output records=6
        Spilled Records=12
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=53
        CPU time spent (ms)=0
        Physical memory (bytes) snapshot=0
        Virtual memory (bytes) snapshot=0
        Total committed heap usage (bytes)=241442816
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=24
    File Output Format Counters 
        Bytes Written=24
复制代码

6.总结

  这里需要注意的是,我们应用部署架构没问题,思路是正确的,问题出在打包上,在打包的时候需要特别注意,另外,有些同学使用IDE的Export导出时也要注意一下,相关依赖是否存在,还有常见的第三方打包工具Fat,这个也是需要注意的。

7.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

联系方式: 
邮箱:smartloli.org@gmail.com 
Twitter: https://twitter.com/smartloli 
QQ群(Hadoop - 交流社区1): 424769183 
温馨提示:请大家加群的时候写上加群理由(姓名+公司/学校),方便管理员审核,谢谢! 

热爱生活,享受编程,与君共勉!



本文转自哥不是小萝莉博客园博客,原文链接:http://www.cnblogs.com/smartloli/,如需转载请自行联系原作者

相关文章
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
83 2
|
1月前
|
分布式计算 资源调度 Hadoop
【赵渝强老师】部署Hadoop的本地模式
本文介绍了Hadoop的目录结构及本地模式部署方法,包括解压安装、设置环境变量、配置Hadoop参数等步骤,并通过一个简单的WordCount程序示例,演示了如何在本地模式下运行MapReduce任务。
|
4月前
|
SQL 分布式计算 Hadoop
centos7通过CDH部署Hadoop
centos7通过CDH部署Hadoop
|
4月前
|
分布式计算 Java Linux
centos7通过Ambari2.74部署Hadoop
centos7通过Ambari2.74部署Hadoop
|
4月前
|
存储 分布式计算 监控
Hadoop在云计算环境下的部署策略
【8月更文第28天】Hadoop是一个开源软件框架,用于分布式存储和处理大规模数据集。随着云计算技术的发展,越来越多的企业开始利用云平台的优势来部署Hadoop集群,以实现更高的可扩展性、可用性和成本效益。本文将探讨如何在公有云、私有云及混合云环境下部署和管理Hadoop集群,并提供具体的部署策略和代码示例。
169 0
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
192 6
|
6天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
33 4
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
115 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
84 1
|
2月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
81 1

相关实验场景

更多