sphinx是支持结果聚类的——WHERE、ORDER BY和GROUP BY

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介:

原生API提供的匹配筛选、排序和分组配置和SQL语法提供的WHERE、ORDER BY和GROUP BY语句的效果是一样的,你可以对匹配结果进行你需要的筛选、排序和分组匹配。例如,如果你要搜索MySQL中1990年代的书籍,并按照价格排序,可以这么写:

 
  1. $cl = new SphinxClient();
  2. $cl->SetFilterRange("year_published", 1990, 1999);
  3. $cl->SetSortMode(SPH_SORT_EXTENDED, "price DESC");
  4. $result = $cl->Query("mysql", "booksindex");

上述代码不仅一目了然而且也展示了通用API的使用模式:首先创建一个客户端对象,配置所有查询设置,然后启动搜索并获取结果。当然,产品级的代码应当添加错误处理:

 
  1. $cl = new SphinxClient();
  2. $cl->SetFilterRange("year_published", 1990, 1999);
  3. $cl->SetSortMode(SPH_SORT_EXTENDED, "price DESC");
  4. $result = $cl->Query("mysql", "booksindex");
  5. if (!$result)
  6. {
  7. // oops, there was an error
  8. DisplayErrorPage($cl->GetLastError());
  9. } else
  10. {
  11. // everything was good
  12. DisplaySearchResult($result);
  13. }

为了进一步完善,让我们也看看如何使用原生API来对年份来分组和计算数据:

 
  1. $cl = new SphinxClient();
  2. $cl->SetFilterRange("year_published", 1990, 1999);
  3. $cl->SetSortMode(SPH_SORT_EXTENDED, "price DESC");
  4. $cl->SetGroupBy("year_published", SPH_GROUPBY_ATTR);
  5. $cl->SetSelect("*, MIN(price) AS minprice,
  6. MAX(price) AS maxprice, AVG(price) AS avgprice");
  7. $result = $cl->Query("mysql", "booksindex");

你会发现,当我们进一步地为查询添加更多的处理时,代码也开始越来越像SQL了。但我们用的是零散的接口而不是单一的表达式来构建查询的。

 

摘自:https://www.zybuluo.com/lxjwlt/note/141406














本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6651290.html,如需转载请自行联系原作者

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
NoSQL Redis 数据库
阿里云Redis集群版简要介绍
产品简介 云数据库 Redis 提供集群版实例,轻松突破 Redis 自身单线程瓶颈,可极大满足对于 Redis 大容量或高性能的业务需求。 云数据库 Redis 集群版内置数据分片及读取算法,整体过程对用户透明,免去用户开发及运维 Redis 集群的烦恼。
13733 0
|
搜索推荐 关系型数据库 数据库
使用sphinx search打造你自己的中文搜索引擎
Google搜索引擎建立至今已经快20年了,之后全球各类大大小小类似的搜索引擎也陆续出现、消亡。国内目前以百度为大,搜狗、360、必应等也势在必争。搜索引擎技术也发展的相当成熟,同时也就出现了很多开源的搜索引擎系统。
3351 0
|
敏捷开发 编解码 安全
测试面试题集锦(一)| 软件测试常见必考问题与流程篇(附答案)
本系列文章总结归纳了一些软件测试工程师常见的面试题,主要来源于个人面试遇到的、网络搜集(完善)、工作日常讨论等,分为以下十个部分,供大家参考。如有错误的地方,欢迎指正。有更多的面试题或面试中遇到的坑,也欢迎补充分享。希望大家都能找到满意的工作,共勉之!
测试面试题集锦(一)| 软件测试常见必考问题与流程篇(附答案)
|
6天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
17天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1326 7
|
5天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
298 129
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
4天前
|
监控 JavaScript Java
基于大模型技术的反欺诈知识问答系统
随着互联网与金融科技发展,网络欺诈频发,构建高效反欺诈平台成为迫切需求。本文基于Java、Vue.js、Spring Boot与MySQL技术,设计实现集欺诈识别、宣传教育、用户互动于一体的反欺诈系统,提升公众防范意识,助力企业合规与用户权益保护。