shinx索引部分源码分析——过程:连接到CSphSource对应的sql数据源,通过fetch row取其中一行,然后解析出field,分词,获得wordhit,最后再加入到CSphSource的Hits里

简介:

CSphSource 数据源

CSphSource_XMLPipe2-XML文件获取数据

CSphSource_SQL-SQL(MySQL)获取数据

 

CSphIndex 索引器

派生类CSphIndex_VLN

 

// 索引过程

virtual int Build ( CSphDict * pDict,

const CSphVector<CSphSource*> & dSources, // 所有数据源

int iMemoryLimit, // 内存设置

 ESphDocinfo eDocinfo );

 

sphinx dSource是一个CSphSource的数组,每一个CSphSource类型的pSource对应一个数据源,因为配置信息中可能会存在多个数据源,所以会有多个pSource。程序会在hIndex中搜索Key值为Source的键值对,提取出对应的值作为pSourceName ,在本例中,我们只有配置文件中的一个Source即mysql。我们看一下CSphSource类型结构。其中包含有三个大部分,第一大部分存储文本分词后的word信息,每一个word(也许是字也许是词)对应一个WordHit,这个WordHit描述该word的相关信息,唯一标示该word。其 中WordHit中又包含三部分,分别为word的文档ID,表示该word属于哪一篇文档;word的ID,表示该word在字典中的对应 ID;Word的位置,表示该word在文档中的偏移量。第二大部分存储Source中文档的相关信息,其中亦包含了三部分,分别为文档ID、文档中列的 数目,以及列对应的指针。第三大部分存储的就是doc中的属性字段信息。

1
2
3
4
5
6
7
/// generic data source
class  CSphSource : public  CSphSourceSettings
{
public :
     CSphVector<CSphWordHit>               m_dHits;    ///< current document split into words
     CSphDocInfo                         m_tDocInfo; ///< current document info
     CSphVector<CSphString>                m_dStrAttrs; ///< current document string attrs
 

Source 信息准备好后,开始准备Index的构建工作,首先检测该Index是否被使用,即是否被上锁,其次通过CSphIndexSettings类型的 tSettings对创建好的pIndex进行初始化,主要是一些索引构建的信息,例如缓存大小,Boudary大小,停用词初始化,分词器初始化等等。 准备完相关信息后,重要的就是Build函数,这是索引构建的核心函数

 

对于Build函数而言,它是单次处理一个数据源并为此构建索引信息

//sphinx.cpp Build ( const CSphVector<CSphSource*> & dSources, int iMemoryLimit, int iWriteBuffer )

首先是准备Source,还是把dSource中的每一个pSource检查下是否都存在,词典是否都准备好,各种初始化是否都齐备

 

链接第一个数据源,获取数据源的Schema信息,就是数据源的Doc中哪些是属性,哪些列是要构建索引的信息

1
2
3
4
5
6
7
// connect 1st source and fetch its schema
     if  ( !dSources[0]->Connect ( m_sLastError )
         || !dSources[0]->IterateHitsStart ( m_sLastError )
         || !dSources[0]->UpdateSchema ( &m_tSchema, m_sLastError ) )
     {
         return  0;
     }

 

本文出自 “博の客” 博客,请务必保留此出处http://frankiewb.blog.51cto.com/8202664/1359897
















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6667955.html,如需转载请自行联系原作者

相关文章
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
2642 10
|
6月前
|
SQL XML Java
配置Spring框架以连接SQL Server数据库
最后,需要集成Spring配置到应用中,这通常在 `main`方法或者Spring Boot的应用配置类中通过加载XML配置或使用注解来实现。
502 0
|
数据库 索引
深入探索数据库索引技术:回表与索引下推解析
【10月更文挑战第15天】在数据库查询优化的领域中,回表和索引下推是两个核心概念,它们对于提高查询性能至关重要。本文将详细解释这两个术语,并探讨它们在数据库操作中的作用和影响。
259 3
|
SQL 开发框架 .NET
ASP.NET连接SQL数据库:详细步骤与最佳实践指南ali01n.xinmi1009fan.com
随着Web开发技术的不断进步,ASP.NET已成为一种非常流行的Web应用程序开发框架。在ASP.NET项目中,我们经常需要与数据库进行交互,特别是SQL数据库。本文将详细介绍如何在ASP.NET项目中连接SQL数据库,并提供最佳实践指南以确保开发过程的稳定性和效率。一、准备工作在开始之前,请确保您
791 3
|
10月前
|
索引
【Flutter 开发必备】AzListView 组件全解析,打造丝滑索引列表!
在 Flutter 开发中,AzListView 是实现字母索引分类列表的理想选择。它支持 A-Z 快速跳转、悬浮分组标题、自定义 UI 和高效性能,适用于通讯录、城市选择等场景。本文将详细解析 AzListView 的核心参数和实战示例,助你轻松实现流畅的索引列表。
472 7
|
SQL 数据库 索引
SQL语句实现投影连接:方法与技巧详解
在SQL数据库查询中,投影和连接是两个核心概念
|
SQL Java 数据库连接
如何使用`DriverManager.getConnection()`连接数据库,并利用`PreparedStatement`执行参数化查询,有效防止SQL注入。
【10月更文挑战第6天】在代码与逻辑交织的世界中,我从一名数据库新手出发,通过不断探索与实践,最终成为熟练掌握JDBC的开发者。这段旅程充满挑战与惊喜,从建立数据库连接到执行SQL语句,再到理解事务管理和批处理等高级功能,每一步都让我对JDBC有了更深的认识。示例代码展示了如何使用`DriverManager.getConnection()`连接数据库,并利用`PreparedStatement`执行参数化查询,有效防止SQL注入。
432 5
|
SQL 数据库 决策智能
SQL语句实现投影连接详解
在SQL中,投影(Projection)和连接(Join)是数据查询和处理中非常重要的两个操作
|
SQL 存储 数据可视化
SQL 数据库大揭秘:连接数字世界的魔法桥梁
在数字化时代,数据如繁星般璀璨,而 SQL 数据库则像强大的引力场,有序汇聚、整理和分析这些数据。SQL 数据库是一个巨大的数字宝库,装满各行各业的“宝藏”。本文将带你探索 SQL 数据库在电商、金融、医疗和教育等领域的应用。例如,在电商中,它能精准推荐商品;在金融中,它是安全卫士,防范欺诈;在医疗中,它是健康管家,管理病历;在教育中,则是智慧导师,个性化教学。此外,还将介绍如何利用板栗看板等工具实现数据可视化,提升决策效率。
|
SQL 开发框架 .NET
ASP连接SQL数据库:从基础到实践
随着互联网技术的快速发展,数据库与应用程序之间的连接成为了软件开发中的一项关键技术。ASP(ActiveServerPages)是一种在服务器端执行的脚本环境,它能够生成动态的网页内容。而SQL数据库则是一种关系型数据库管理系统,广泛应用于各类网站和应用程序的数据存储和管理。本文将详细介绍如何使用A
317 3

热门文章

最新文章

推荐镜像

更多
  • DNS