shinx索引部分源码分析——过程:连接到CSphSource对应的sql数据源,通过fetch row取其中一行,然后解析出field,分词,获得wordhit,最后再加入到CSphSource的Hits里

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:

CSphSource 数据源

CSphSource_XMLPipe2-XML文件获取数据

CSphSource_SQL-SQL(MySQL)获取数据

 

CSphIndex 索引器

派生类CSphIndex_VLN

 

// 索引过程

virtual int Build ( CSphDict * pDict,

const CSphVector<CSphSource*> & dSources, // 所有数据源

int iMemoryLimit, // 内存设置

 ESphDocinfo eDocinfo );

 

sphinx dSource是一个CSphSource的数组,每一个CSphSource类型的pSource对应一个数据源,因为配置信息中可能会存在多个数据源,所以会有多个pSource。程序会在hIndex中搜索Key值为Source的键值对,提取出对应的值作为pSourceName ,在本例中,我们只有配置文件中的一个Source即mysql。我们看一下CSphSource类型结构。其中包含有三个大部分,第一大部分存储文本分词后的word信息,每一个word(也许是字也许是词)对应一个WordHit,这个WordHit描述该word的相关信息,唯一标示该word。其 中WordHit中又包含三部分,分别为word的文档ID,表示该word属于哪一篇文档;word的ID,表示该word在字典中的对应 ID;Word的位置,表示该word在文档中的偏移量。第二大部分存储Source中文档的相关信息,其中亦包含了三部分,分别为文档ID、文档中列的 数目,以及列对应的指针。第三大部分存储的就是doc中的属性字段信息。

1
2
3
4
5
6
7
/// generic data source
class  CSphSource : public  CSphSourceSettings
{
public :
     CSphVector<CSphWordHit>               m_dHits;    ///< current document split into words
     CSphDocInfo                         m_tDocInfo; ///< current document info
     CSphVector<CSphString>                m_dStrAttrs; ///< current document string attrs
 

Source 信息准备好后,开始准备Index的构建工作,首先检测该Index是否被使用,即是否被上锁,其次通过CSphIndexSettings类型的 tSettings对创建好的pIndex进行初始化,主要是一些索引构建的信息,例如缓存大小,Boudary大小,停用词初始化,分词器初始化等等。 准备完相关信息后,重要的就是Build函数,这是索引构建的核心函数

 

对于Build函数而言,它是单次处理一个数据源并为此构建索引信息

//sphinx.cpp Build ( const CSphVector<CSphSource*> & dSources, int iMemoryLimit, int iWriteBuffer )

首先是准备Source,还是把dSource中的每一个pSource检查下是否都存在,词典是否都准备好,各种初始化是否都齐备

 

链接第一个数据源,获取数据源的Schema信息,就是数据源的Doc中哪些是属性,哪些列是要构建索引的信息

1
2
3
4
5
6
7
// connect 1st source and fetch its schema
     if  ( !dSources[0]->Connect ( m_sLastError )
         || !dSources[0]->IterateHitsStart ( m_sLastError )
         || !dSources[0]->UpdateSchema ( &m_tSchema, m_sLastError ) )
     {
         return  0;
     }

 

本文出自 “博の客” 博客,请务必保留此出处http://frankiewb.blog.51cto.com/8202664/1359897
















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6667955.html,如需转载请自行联系原作者

相关文章
|
1月前
|
SQL IDE 数据库连接
IntelliJ IDEA处理大文件SQL:性能优势解析
在数据库开发和管理工作中,执行大型SQL文件是一个常见的任务。传统的数据库管理工具如Navicat在处理大型SQL文件时可能会遇到性能瓶颈。而IntelliJ IDEA,作为一个强大的集成开发环境,提供了一些高级功能,使其在执行大文件SQL时表现出色。本文将探讨IntelliJ IDEA在处理大文件SQL时的性能优势,并与Navicat进行比较。
33 4
|
1月前
|
SQL Java 数据库连接
canal-starter 监听解析 storeValue 不一样,同样的sql 一个在mybatis执行 一个在数据库操作,导致解析不出正确对象
canal-starter 监听解析 storeValue 不一样,同样的sql 一个在mybatis执行 一个在数据库操作,导致解析不出正确对象
|
2月前
|
SQL Oracle 关系型数据库
SQL优化-使用联合索引和函数索引
在一次例行巡检中,发现一条使用 `to_char` 函数将日期转换为字符串的 SQL 语句 CPU 利用率很高。为了优化该语句,首先分析了 where 条件中各列的选择性,并创建了不同类型的索引,包括普通索引、函数索引和虚拟列索引。通过对比不同索引的执行计划,最终确定了使用复合索引(包含函数表达式)能够显著降低查询成本,提高执行效率。
|
2月前
|
SQL 监控 数据库
SQL语句是否都需要解析及其相关技巧和方法
在数据库管理中,SQL(结构化查询语言)语句的使用无处不在,它们负责数据的查询、插入、更新和删除等操作
|
1月前
|
SQL 监控 安全
员工上网行为监控软件:SQL 在数据查询监控中的应用解析
在数字化办公环境中,员工上网行为监控软件对企业网络安全和管理至关重要。通过 SQL 查询和分析数据库中的数据,企业可以精准了解员工的上网行为,包括基础查询、复杂条件查询、数据统计与分析等,从而提高网络管理和安全防护的效率。
30 0
|
2月前
|
SQL 关系型数据库 MySQL
如何确认SQL用了索引:详细技巧与方法
在数据库管理中,索引是提高SQL查询性能的重要手段
|
2月前
|
SQL 存储 数据库
SQL语句是否都需要解析及其相关技巧与方法
在数据库管理系统中,SQL(Structured Query Language)语句作为与数据库交互的桥梁,其执行过程往往涉及到一个或多个解析阶段
|
2月前
|
SQL 数据可视化 BI
SQL语句及查询结果解析:技巧与方法
在数据库管理和数据分析中,SQL语句扮演着至关重要的角色
|
2月前
|
SQL 监控 关系型数据库
SQL错误代码1303解析与处理方法
在SQL编程和数据库管理中,遇到错误代码是常有的事,其中错误代码1303在不同数据库系统中可能代表不同的含义
|
2月前
|
SQL 存储 关系型数据库
SQL默认索引是什么:深入解析与技巧
在SQL数据库中,索引是一种用于提高查询性能的重要数据结构

热门文章

最新文章