97.5%准确率的深度学习中文分词(字嵌入+Bi-LSTM+CRF)

简介:
+关注继续查看

摘要
深度学习当前在NLP领域发展也相当快,翻译,问答,摘要等基本都被深度学习占领了。 本文给出基于深度学习的中文分词实现,借助大规模语料,不需要构造额外手工特征,在2014年人民日报语料上取得97.5%的准确率。模型基本是参考论文:http://www.aclweb.org/anthology/N16-1030

 

相关方法

中文分词是个比较经典的问题,各大互联网公司都会有自己的分词实现。 考虑到性能,可维护性,词库更新,多粒度,以及其他的业务需求,一般工业界中文分词方案都是基于规则。
1) 基于规则的常见的就是最大正/反向匹配,以及双向匹配。
2) 规则里糅合一定的统计规则,会采用动态规划计算最大的概率路径的分词
以上说起来很简单,其中还有很多细节,比如词法规则的高效匹配编译,词库的索引结构等。
3) 基于传统机器学习的方法 ,以CRF为主,也有用svm,nn的实现,这类都是基于模型的,跟本文一样,都有个缺陷,不方便增加用户词典(但可以结合,比如解码的时候force-decode)。 速度上会有损耗。 另外都需要提取特征。传统CRF一般是定义特征模板,方便性上有所提高。另外传统CRF训练算法(LBFGS)较慢,也有使用sgd的,但多线程都支持的不好。代表有crf++, crfsuite, crfsgd, wapiti等。

 

深度学习方法

深度学习主要是特征学习,端到端训练, 适合有大量语料的场景。另外各种工具越来越完善,利用GPU可大幅提高训练速度。
前文提过,深度学习主要是特征学习,在NLP里各种词嵌入是一种有效的特征学习。 本文实现的第一步也是对语料进行处理,使用word2vec对语料的字进行嵌入,每个字特征为50维。
得到字嵌入后,用字嵌入特征喂给双向LSTM, 对输出的隐层加一个线性层,然后加一个CRF就得到本文实现的模型。

另外,字符嵌入的表示可以是纯预训练的,但也可以在训练模型的时候再fine-tune,一般而言后者效果更好。
对于fine-tune的情形,可以在字符嵌入后,输入双向LSTM之前加入dropout进一步提升模型效果。
最后,对于最优化方法,文本语言模型类的貌似Adam效果更好, 对于分类之类的,貌似AdaDelta效果更好。


原文链接:
https://mp.weixin.qq.com/s?__biz=MjM5ODIzNDQ3Mw==&mid=2649966433&idx=1&sn=be6c0e5485003d6f33804261df7c3ecf&chksm=beca376789bdbe71ef28c509776132d96e7e662be0adf0460cfd9963ad782b32d2d5787ff499&mpshare=1&scene=1&srcid=1122cZnCbEKZCCzf9LOSAyZ6&pass_ticket=lT4VaDjNiXiIPNmtxEJuioi434%2Bhm9W7at4S93hYP0U%3D#rd















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7079097.html,如需转载请自行联系原作者


相关文章
|
3月前
|
机器学习/深度学习 数据采集 TensorFlow
深度学习模型在图像识别中的应用:CIFAR-10数据集实践与准确率分析
深度学习模型在图像识别中的应用:CIFAR-10数据集实践与准确率分析
87 0
|
3月前
|
机器学习/深度学习 自然语言处理 算法
Jieba分词的准确率提升:使用paddle模式进行分词(使用百度飞桨深度学习模型进行分词)
jieba中的paddle模式是指使用飞桨(PaddlePaddle)深度学习框架加速分词的一种模式。相对于传统的分词算法,paddle模式采用了深度学习模型,可以获得更高的分词准确度和更快的分词速度。
|
4月前
|
机器学习/深度学习 编解码 自然语言处理
深度学习提高模型准确率方法
深度学习提高模型准确率方法
|
12月前
|
机器学习/深度学习 算法 数据库
基于深度学习的多人步态识别系统(目前数据集大小124人,准确率96.5%)
基于深度学习的多人步态识别系统(目前数据集大小124人,准确率96.5%)
基于深度学习的多人步态识别系统(目前数据集大小124人,准确率96.5%)
|
12月前
|
机器学习/深度学习 数据采集 算法
基于深度学习的单人步态识别系统(目前数据集大小17人,准确率99.98%)
基于深度学习的单人步态识别系统(目前数据集大小17人,准确率99.98%)
基于深度学习的单人步态识别系统(目前数据集大小17人,准确率99.98%)
|
12月前
|
机器学习/深度学习
【深度学习】2-模型在测试集的准确率大于训练集
【深度学习】2-模型在测试集的准确率大于训练集
445 0
【深度学习】2-模型在测试集的准确率大于训练集
|
机器学习/深度学习
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
3482 2
|
机器学习/深度学习
当深度学习搭上一双鞋,有人要用这检测你的压力水平!可无线操作,准确率达84%
当深度学习搭上一双鞋,有人要用这检测你的压力水平!可无线操作,准确率达84%
当深度学习搭上一双鞋,有人要用这检测你的压力水平!可无线操作,准确率达84%
相关产品
机器翻译
推荐文章
更多