聚类(三)FUZZY C-MEANS 模糊c-均值聚类算法——本质和逻辑回归类似啊-阿里云开发者社区

开发者社区> 人工智能> 正文
登录阅读全文

聚类(三)FUZZY C-MEANS 模糊c-均值聚类算法——本质和逻辑回归类似啊

简介:

摘自:http://ramsey16.net/%E8%81%9A%E7%B1%BB%EF%BC%88%E4%B8%89%EF%BC%89fuzzy-c-means/

经典k-均值聚类算法的每一步迭代中,每一个样本点都被认为是完全属于某一类别。我们可以放松这个条件,假定每个样本xjxj模糊“隶属”于某一类的。

硬聚类把每个待识别的对象严格的划分某类中,具有非此即彼的性质;模糊聚类建立了样本对类别的不确定描述,更能客观的反应客观世界,从而成为聚类分析的主流。

 

例1、一个一维的例子来说,给定一个特定数据集,分布如下图:

image031

图中可以很容易分辨出两类数据,分别表示为‘A’ and ‘B’. 利用前述的k-means 算法,每个数据关联一个特定的质心,隶属度函数如下所示:

image033

用FCM 算法,同一个数据并不单独属于一个分类,而是可以出现在中间。在这个例子中,隶属函数变得更加平滑,表明每个数据可能属于几个分类。

image035

上图中,红色点表示的数据更可能属于类别B,而不是A, ‘m’ 的值0.2表明了数据对A的隶属程度。

















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7121593.html,如需转载请自行联系原作者


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
人工智能
使用钉钉扫一扫加入圈子
+ 订阅

了解行业+人工智能最先进的技术和实践,参与行业+人工智能实践项目

其他文章
最新文章
相关文章