灵活定义神经网络结构-阿里云开发者社区

开发者社区> 吞吞吐吐的> 正文

灵活定义神经网络结构

简介:
+关注继续查看

用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!

 

一、用法

1). 定义一个三层神经网络:

'''示例一'''
nn = NeuralNetworks([3,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测

说明:

  输入层节点数目:3

  隐藏层节点数目:4

  输出层节点数目:2

 

2).定义一个五层神经网络:

'''示例二'''
nn = NeuralNetworks([3,5,7,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测

说明:

  输入层节点数目:3

  隐藏层1节点数目:5

  隐藏层2节点数目:7

  隐藏层3节点数目:4

  输出层节点数目:2

 

二、实现

如下实现方式为本人(@hhh5460)原创。 要点: dtype=object

复制代码
import numpy as np

class NeuralNetworks(object):
    ''''''
    def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
        '''搭建神经网络框架'''
        # 各层节点数目 (向量)
        self.n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
        self.size = self.n.size # 层的总数
            
        # 层 (向量)
        self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
        self.a = np.empty(self.size, dtype=object)
        self.data_a = np.empty(self.size, dtype=object)
        
        # 偏置 (向量)
        self.b = np.empty(self.size, dtype=object)
        self.delta_b = np.empty(self.size, dtype=object)

        # 权 (矩阵)
        self.w = np.empty(self.size, dtype=object)
        self.delta_w = np.empty(self.size, dtype=object)
        
        # 填充
        for i in range(self.size):
            self.a[i] = np.zeros(self.n[i])  # 全零
            self.z[i] = np.zeros(self.n[i])  # 全零
            self.data_a[i] = np.zeros(self.n[i])  # 全零
            if i < self.size - 1:
                self.b[i] = np.ones(self.n[i+1])   # 全一
                self.delta_b[i] = np.zeros(self.n[i+1])  # 全零
                mu, sigma = 0, 0.1 # 均值、方差
                self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1]))  # # 正态分布随机化
                self.delta_w[i] = np.zeros((self.n[i], self.n[i+1]))  # 全零
复制代码

 

下面完整代码是我学习斯坦福机器学习教程,完全自己敲出来的:

 

复制代码
import numpy as np
'''
参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
'''



class NeuralNetworks(object):
    ''''''
    def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
        '''搭建神经网络框架'''
        self.n_iter = n_iter # 迭代次数
        self.error = error # 允许最大误差
        self.alpha = alpha # 学习速率
        self.lamda = lamda # 衰减因子 # 此处故意拼写错误!
        
        
        if n_layers is None:
            raise '各层的节点数目必须设置!'
        elif not isinstance(n_layers, list):
            raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
        # 节点数目 (向量)
        self.n = np.array(n_layers)
        self.size = self.n.size # 层的总数
            
        # 层 (向量)
        self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
        self.z = np.empty(self.size, dtype=object)
        
        # 偏置 (向量)
        self.b = np.empty(self.size, dtype=object)
        self.delta_b = np.empty(self.size, dtype=object)

        # 权 (矩阵)
        self.w = np.empty(self.size, dtype=object)
        self.delta_w = np.empty(self.size, dtype=object)
        
        # 残差 (向量)
        self.data_a = np.empty(self.size, dtype=object)
        
        # 填充
        for i in range(self.size):
            self.a[i] = np.zeros(self.n[i])  # 全零
            self.z[i] = np.zeros(self.n[i])  # 全零
            self.data_a[i] = np.zeros(self.n[i])  # 全零
            if i < self.size - 1:
                self.b[i] = np.ones(self.n[i+1])   # 全一
                self.delta_b[i] = np.zeros(self.n[i+1])  # 全零
                mu, sigma = 0, 0.1 # 均值、方差
                self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1]))  # # 正态分布随机化
                self.delta_w[i] = np.zeros((self.n[i], self.n[i+1]))  # 全零

        # 激活函数
        self.active_functions = {
            'sigmoid': self.sigmoid,
            'tanh': self.tanh,
            'radb': self.radb,
            'line': self.line,
        }
        
        # 激活函数的导函数
        self.derivative_functions = {
            'sigmoid': self.sigmoid_d,
            'tanh': self.tanh_d,
            'radb': self.radb_d,
            'line': self.line_d,
        }
        
        if active_type is None:
            self.active_type = ['sigmoid'] * (self.size - 1) # 默认激活函数类型
        else:
            self.active_type = active_type
            
    def sigmoid(self, z):
        if np.max(z) > 600:
            z[z.argmax()] = 600
        return 1.0 / (1.0 + np.exp(-z))
            
    def tanh(self, z):
        return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
            
    def radb(self, z):
        return np.exp(-z * z)
            
    def line(self, z):
        return z
            
    def sigmoid_d(self, z):
        return z * (1.0 - z)
            
    def tanh_d(self, z):
        return 1.0 - z * z
            
    def radb_d(self, z):
        return -2.0 * z * np.exp(-z * z)
            
    def line_d(self, z):
        return np.ones(z.size) # 全一
        
    def forward(self, x):
        '''正向传播(在线)''' 
        # 用样本 x 走一遍,刷新所有 z, a
        self.a[0] = x
        for i in range(self.size - 1):
            self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i] 
            self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函数

    def err(self, X, Y):
        '''误差'''
        last = self.size-1
        err = 0.0
        for x, y in zip(X, Y):
            self.forward(x)
            err += 0.5 * np.sum((self.a[last] - y)**2)
        err /= X.shape[0]
        err += sum([np.sum(w) for w in self.w[:last]**2])
        return err
    
    def backward(self, y):
        '''反向传播(在线)'''
        last = self.size - 1
        # 用样本 y 走一遍,刷新所有delta_w, delta_b
        self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函数的导函数
        for i in range(last-1, 1, -1):
            self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函数的导函数
            # 计算偏导
            p_w = np.outer(self.a[i], self.data_a[i+1]) # 外积!感谢 numpy 的强大!
            p_b = self.data_a[i+1]
            # 更新 delta_w, delta_w
            self.delta_w[i] = self.delta_w[i] + p_w
            self.delta_b[i] = self.delta_b[i] + p_b
        
    def update(self, n_samples):
        '''更新权重参数'''
        last = self.size - 1
        for i in range(last):
            self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i])
            self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i])
            
    def fit(self, X, Y):
        '''拟合'''
        for i in range(self.n_iter):
            # 用所有样本,依次
            for x, y in zip(X, Y):
                self.forward(x)  # 前向,更新 a, z;
                self.backward(y) # 后向,更新 delta_w, delta_b
                
            # 然后,更新 w, b
            self.update(len(X))
            
            # 计算误差
            err = self.err(X, Y)
            if err < self.error:
                break

            # 整千次显示误差(否则太无聊!)
            if i % 1000 == 0:
                print('iter: {}, error: {}'.format(i, err))

    def predict(self, X):
        '''预测'''
        last = self.size - 1
        res = []
        for x in X:
            self.forward(x)
            res.append(self.a[last])
        return np.array(res)
        

        
if __name__ == '__main__':
    nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定义神经网络

    X = np.array([[0.,0.], # 准备数据
                  [0.,1.],
                  [1.,0.],
                  [1.,1.]])
    y = np.array([0,1,1,0])
    
    nn.fit(X,y)          # 拟合
    print(nn.predict(X)) # 预测
    
    
复制代码

 

本文转自罗兵博客园博客,原文链接:http://www.cnblogs.com/hhh5460/p/5124132.html,如需转载请自行联系原作者

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
DenseNet实战:tensorflow2.X版本,DenseNet121图像分类任务(小数据集)
本例提取了猫狗大战数据集中的部分数据做数据集,演示tensorflow2.0以上的版本如何使用Keras实现图像分类,分类的模型使用DenseNet121。
8 0
Pycharm远程ECS部署Django小项目
本文完成了一个简易的Django项目的部署,ECS上选用的系统是Ubuntu,所用的Django项目是笔者本科期间的课程设计,详见https://github.com/ztingz/NTCS
15 0
Part3__机器学习实战学习笔记__朴素贝叶斯
本文首先对朴素贝叶斯算法原理进行简要的介绍,然后在iris数据集上面测试算法的效果。
12 0
如何科学的使用无影云电脑
我当时整个人都高兴的跳起来了,由于坐下的时候太着急,一屁股坐在了地上,导致我之后的一段时间都只能半只屁股坐在椅子上,带薪摸鱼的难度得到大幅度提升。 作为一名网络安全领域的博主,经常用Python做一些奇怪的操作,比如爬CSDN的热榜信息,爬b站舞蹈区的小姐姐,一边爬一边感慨中国文化的博大精深
20 0
DenseNet实战:tensorflow2.X版本,DenseNet121图像分类任务(大数据集)
本例提取了猫狗大战数据集中的部分数据做数据集,演示tensorflow2.0以上的版本如何使用Keras实现图像分类,分类的模型使用DenseNet121。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,节省内存 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。
5 0
基于交通工具联网的数据分析
截止到2021年年底,包括中国在内的国家和地区超过一半以上的新组装车辆都已配备了互联网接口。当前全球联网车数量已经超过了3亿辆... ...
9 0
python测试框架-pytest
python测试框架-pytest 一、pytest 介绍、运行、参数化和数据驱动、Fixture pytest安装与介绍 官网 : pip install -U pytest 查看版本号:pytest --version 为何选择pytest 兼容unittest 定制化插件开发 pycharm 配置github VSC--Git--Remotes... pycharm pytest 配置 settings--搜索pytest--Python integrated Tools--testing--选择pytest:根据黄色叹号fix安装pytest安装到环境
9 0
利用python写福字【支付宝五福活动大概率出敬业福】
1 月 19 日消息,随着春节临近,2022 年支付宝集五福活动今日正式开启。此次集五福活动时间为 2022 年 1 月 19 日 00:00-1 月 31 日 22:00。 数据显示,过去六年累计参与支付宝集五福的人数已经超过了 7 亿,每 2 个中国人里就有 1 个曾扫福、集福、送福。
7 0
阿里云 ACP是什么?阿里云 ACP有什么用?
直到现在,还有很多从事互联网的工作人员都并不是清楚阿里云 ACP是什么,它是阿里云企业推出的针对于数据分析工程师的资格认证,有极高的含金量。因为阿里云在国内市场处于领先地位,他们推出的资格认证自然而然受到很多人的欢迎,很多互联网行业从业人员都以获得阿里ACP认证为荣。那么,阿里云 ACP是什么?阿里云 ACP有什么用?在认证大使官网上查阅了相关资料,我得到了答案。
5 0
4852
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
《2021云上架构与运维峰会演讲合集》
立即下载
《零基础CSS入门教程》
立即下载
《零基础HTML入门教程》
立即下载