极简反传(BP)神经网络

简介:

 

 一、两层神经网络(感知机)

复制代码
import numpy as np

'''极简两层反传(BP)神经网络'''

# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,0,1,1])
 
# 权值矩阵 初始化
Wi = 2 * np.random.random(3) - 1
 
for iter in range(10000):
    # 前向传播,计算误差
    li = X
    lo = 1 / (1 + np.exp(-np.dot(li, Wi))) # 激活函数:sigmoid
    lo_error = y - lo

    # 后向传播,更新权值
    lo_delta = lo_error * lo * (1 - lo)    # sigmoid函数的导数(梯度下降)
    Wi += np.dot(lo_delta, li)
    
print("训练效果:\n", lo)
复制代码

说明:

  只有两层:输入层/输出层, 本质是感知机

  离线算法:批量学习(numpy矩阵运算的威力在此体现出来了

  效果还蛮不错:

    

 

二、三层神经网络

复制代码
import numpy as np

'''极简三层反传(BP)神经网络'''

# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,1,1,0])

# 权值矩阵
Wi = 2 * np.random.random((3, 5)) - 1
Wh = 2 * np.random.random(5) - 1

# 训练
for i in range(10000):
    # 前向传播,计算误差
    li = X
    lh = 1 / (1 + np.exp(-np.dot(li, Wi)))
    lo = 1 / (1 + np.exp(-np.dot(lh, Wh)))
    lo_error = y - lo
    
    # 后向传播,更新权值
    lo_delta = lo_error * (lo * (1 - lo))
    lh_delta = np.outer(lo_delta, Wh) * (lh * (1 - lh)) # 外积!感谢 numpy 的强大!
    Wh += np.dot(lh.T, lo_delta)
    Wi += np.dot(li.T, lh_delta)
    
print("训练之后:\n", lo)
复制代码

说明: 增加了一个隐藏层(五个节点)

 

三、四层神经网络

复制代码
import numpy as np

'''极简四层反传(BP)神经网络'''

# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,1,1,0])

# 权值矩阵
Wi  = 2 * np.random.random((3, 5)) - 1
Wh1 = 2 * np.random.random((5, 4)) - 1
Wh2 = 2 * np.random.random(4) - 1

# 训练
for i in range(10000):
    # 前向传播,计算误差
    li = X
    lh1 = 1 / (1 + np.exp(-np.dot(li,  Wi )))
    lh2 = 1 / (1 + np.exp(-np.dot(lh1, Wh1)))
    lo  = 1 / (1 + np.exp(-np.dot(lh2, Wh2)))
    lo_error = y - lo
    
    # 后向传播,更新权值
    lo_delta = lo_error * (lo * (1 - lo))
    lh2_delta = np.outer(lo_delta, Wh2.T) * (lh2 * (1 - lh2))
    lh1_delta = np.dot(lh2_delta, Wh1.T) * (lh1 * (1 - lh1))  # 注意:这里是dot!
    
    Wh2 += np.dot(lh2.T, lo_delta)
    Wh1 += np.dot(lh1.T, lh2_delta)
    Wi  += np.dot(li.T,  lh1_delta)
    
print("训练之后:\n", lo)
复制代码

说明: 增加了两个隐藏层(五个节点,四个节点)

 

四、三层神经网络的另一种方式

复制代码
import numpy as np

# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,1,1,0])

ni = 3 # 输入层节点数
nh = 5 # 隐藏层节点数
no = 2 # 输出层节点数(注意这里是2!!)

# 初始化矩阵、偏置
Wi = np.random.randn(ni, nh) / np.sqrt(ni)
Wh = np.random.randn(nh, no) / np.sqrt(nh)
bh = np.zeros(nh)
bo = np.zeros(no)

# 训练
for i in range(1000):
    # 前向传播
    li = X
    lh = np.tanh(np.dot(X, Wi) + bh)     # tanh 函数
    lo = np.exp(np.dot(lh, Wh) + bo)
    probs = lo / np.sum(lo, axis=1, keepdims=True)

    # 后向传播
    lo_delta = probs
    lo_delta[range(X.shape[0]), y] += 1 # -=1
    lh_delta = np.dot(lo_delta, Wh.T) * (1 - np.power(lh, 2)) # tanh 函数的导数

    # 更新权值、偏置
    epsilon = 0.01    # 学习速率
    lamda = 0.01      # 正则化强度 
    bo += -epsilon * np.sum(lo_delta, axis=0, keepdims=True).reshape(-1)
    Wh += -epsilon * (np.dot(lh.T, lo_delta) + lamda * Wh)
    bh += -epsilon * np.sum(lh_delta, axis=0)
    Wi += -epsilon * (np.dot(X.T, lh_delta) + lamda * Wi)
    
    
print("训练之后:\n", np.argmax(probs, axis=1))
复制代码

说明:

  1. 输出层有两个节点。其原因是样本有两种类别(最值得注意

  2. 添加了偏置、学习速率、正则化强度

  3. 预测结果是: np.argmax(probs, axis=1)

  4. 当然,也可以推广到多个隐藏层的情况

 

五、任意层数的神经网络

复制代码
import numpy as np

# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,1,1,0])

# 神经网络结构,层数任意!
sizes = [3,5,7,2]

# 初始化矩阵、偏置
biases = [np.random.randn(j) for j in sizes[1:]]
weights = [np.random.randn(i,j) for i,j in zip(sizes[:-1], sizes[1:])]

layers = [None] * len(sizes)
layers[0] = X
layers_delta = [None] * (len(sizes) - 1)

epsilon = 0.01 # 学习速率
lamda = 0.01   # 正则化强度

# 训练
for i in range(1000):
    # 前向传播
    for i in range(1, len(layers)):
        layers[i] = 1 / (1 + np.exp(-(np.dot(layers[i-1], weights[i-1]) + biases[i-1])))
    
    # 后向传播
    probs = layers[-1] / np.sum(layers[-1], axis=1, keepdims=True)
    layers_delta[-1] = probs
    layers_delta[-1][range(X.shape[0]), y] += 1
    for i in range(len(sizes)-2, 0, -1):
        layers_delta[i-1] = np.dot(layers_delta[i], weights[i].T) * (layers[i] * (1 - layers[i]))

    # 更新权值、偏置
    for i in range(len(sizes)-2, -1, -1):
        biases[i]  -= epsilon * np.sum(layers_delta[i], axis=0)
        weights[i] -= epsilon * (np.dot(layers[i].T, layers_delta[i]) + lamda * weights[i])
    
    
print("训练之后-->np.argmax(probs, axis=1):\n", np.argmax(probs, axis=1))
复制代码

说明:

  1. 这只是上一种神经网络的层数的扩展

  2. 通过内部循环,层数可以任意。

  3. 循环次数太大的时候(比如10000),会报RunTimeError,貌似溢出

 

本文转自罗兵博客园博客,原文链接:http://www.cnblogs.com/hhh5460/p/5249983.html ,如需转载请自行联系原作者
相关文章
|
3月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
233 80
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
2月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
200 10
|
3月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
4月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
3月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
102 12
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
4月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
5月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
101 2
|
7月前
|
机器学习/深度学习 前端开发 数据挖掘
基于Python Django的房价数据分析平台,包括大屏和后台数据管理,有线性、向量机、梯度提升树、bp神经网络等模型
本文介绍了一个基于Python Django框架开发的房价数据分析平台,该平台集成了多种机器学习模型,包括线性回归、SVM、GBDT和BP神经网络,用于房价预测和市场分析,同时提供了前端大屏展示和后台数据管理功能。
165 9

热门文章

最新文章