基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Inception V4 进行训练和检测

简介:

话题 3: 基于深度学习的二进制恶意样本检测

分享主题:全球正在经历一场由科技驱动的数字化转型,传统技术已经不能适应病毒数量飞速增长的发展态势。而基于沙箱的检测方案无法满足 APT 攻击的检测需求,也受到多种反沙箱技术的干扰。在充分考察过各种技术方案的优劣后,瀚思科技开发出了基于深度学习的二进制病毒样本检测技术,可以做到沙箱同等水平的 99% 的检测准确率,而误报率低于 1/1000。基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Inception V4 进行训练和检测。极大的简化了病毒检测流程,速度更是远超沙箱技术,可以做到日均百万样本的检测量。由于深度学习是自动抽取数千万样本的海量特征,使得我们的深度学习模型具有极强的通用性,即使数月不更新,也能做到大于 90% 的检测率。

 

瀚思的安全产品做的。














本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7753210.html,如需转载请自行联系原作者



相关文章
|
4天前
|
机器学习/深度学习 算法 TensorFlow
深度学习中的图像识别技术
【9月更文挑战第3天】本文介绍了深度学习在图像识别领域的应用,包括卷积神经网络(CNN)的原理、实现和优化方法。通过代码示例展示了如何使用Python和TensorFlow库构建一个简单的CNN模型进行图像分类。
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的魔法:如何用神经网络解锁数据的奥秘
在人工智能的璀璨星空中,深度学习犹如一颗最亮的星,它以其强大的数据处理能力,改变了我们对世界的认知方式。本文将深入浅出地介绍深度学习的核心概念、工作原理及其在不同领域的应用实例,让读者能够理解并欣赏到深度学习技术背后的奇妙和强大之处。
11 3
|
2天前
|
机器学习/深度学习 人工智能 算法
深度学习的奥秘:探索神经网络的魔法
在本文中,我们将一起踏上一场奇妙的旅程,探索深度学习背后的科学奥秘。通过简单易懂的语言和有趣的比喻,我们将解锁神经网络的强大力量,并了解它们如何改变我们的世界。无论你是科技爱好者还是对人工智能充满好奇的朋友,这篇文章都将为你打开一扇通往未来的大门。
|
3天前
|
机器学习/深度学习 存储 PyTorch
深度学习训练时混合精度的作用
在深度学习训练过程中,混合精度(Mixed Precision)是指同时使用不同的数值精度(如16位浮点数和32位浮点数)来进行计算。
9 2
|
7天前
|
机器学习/深度学习
深度学习中的正则化技术:防止过拟合的利器
在深度学习的探索之旅中,模型的性能往往受限于一个隐形的敌人——过拟合。本文通过深入浅出的方式,探讨了如何运用正则化技术这一护盾,保护我们的模型免受过拟合之害。从L1和L2正则化的基本概念出发,到深入理解Dropout和数据增强等高级技巧,我们将一起构建起防御过拟合的坚固堡垒。
|
6天前
|
机器学习/深度学习 监控 自动驾驶
深度学习中的图像识别技术
【9月更文挑战第2天】本文将介绍深度学习在图像识别领域的应用。我们将探讨如何通过深度学习模型,特别是卷积神经网络(CNN)来识别图像中的对象。我们将看到,通过训练一个深度学习模型,我们可以实现对图像中对象的自动识别,这对于许多实际应用来说都是非常有用的。
|
6天前
|
机器学习/深度学习 算法 开发者
深度学习的魔法:用神经网络识别手写数字
【9月更文挑战第2天】在这篇技术文章中,我们将一起探索深度学习的奥秘,并尝试使用神经网络来识别手写数字。通过简单的代码示例,我们将了解如何构建和训练一个深度学习模型,以及如何使用它来进行手写数字的识别。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和实践技巧。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的艺术:探索神经网络的奥秘
【9月更文挑战第2天】 在人工智能的宏伟画卷中,深度学习以其独特的魅力和强大的能力占据了中心舞台。本文将深入浅出地探讨深度学习的核心——神经网络,揭示其如何模拟人脑处理信息的方式,以及它在图像识别、自然语言处理等领域的应用。我们将从基础概念出发,逐步深入到网络结构的设计思想,最后探讨深度学习面临的挑战与未来发展方向。通过本文,读者将获得对深度学习基本原理的理解,并激发进一步探索这一领域的好奇心。
|
8天前
|
机器学习/深度学习 监控 自动驾驶
深度学习中的图像识别技术
【8月更文挑战第31天】本文将介绍深度学习在图像识别领域的应用。我们将从基础概念出发,逐步深入到模型构建、训练过程以及实际应用案例。通过代码示例,我们将展示如何利用深度学习框架实现图像识别任务。最后,我们将探讨未来发展趋势和可能的挑战。
|
5天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习在图像识别中的应用与挑战
【9月更文挑战第2天】本文将探讨深度学习技术如何在图像识别领域大放异彩,并分析其面临的主要挑战。我们将通过一个实际的代码示例,展示如何利用深度学习模型进行图像分类任务,从而让读者对深度学习在图像识别中的应用有一个直观的理解。
43 22