spark 从RDD createDataFrame 的坑

简介:

Scala:

import org.apache.spark.ml.linalg.Vectors

val data = Seq( (7, Vectors.dense(0.0, 0.0, 18.0, 1.0), 1.0), (8, Vectors.dense(0.0, 1.0, 12.0, 0.0), 0.0), (9, Vectors.dense(1.0, 0.0, 15.0, 0.1), 0.0) ) val df = spark.createDataset(data).toDF("id", "features", "clicked") 

Python:

from pyspark.ml.linalg import Vectors df = spark.createDataFrame([ (7, Vectors.dense([0.0, 0.0, 18.0, 1.0]), 1.0,), (8, Vectors.dense([0.0, 1.0, 12.0, 0.0]), 0.0,), (9, Vectors.dense([1.0, 0.0, 15.0, 0.1]), 0.0,)], ["id", "features", "clicked"]) 
如果是pair rdd则:

    stratified_CV_data = training_data.union(test_data) #pair rdd
    #schema = StructType([
    #   StructField("label", IntegerType(), True),
    #   StructField("features", VectorUDT(), True)])
    vectorized_CV_data = sqlContext.createDataFrame(stratified_CV_data, ["label", "features"]) #,schema) 

因为spark交叉验证的数据集必须是data frame,也是醉了!















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7805358.html,如需转载请自行联系原作者


相关文章
|
12月前
|
SQL 消息中间件 分布式计算
大数据-84 Spark 集群 RDD创建 RDD-Transformation操作算子 详解(一)
大数据-84 Spark 集群 RDD创建 RDD-Transformation操作算子 详解(一)
152 5
|
12月前
|
分布式计算 大数据 数据处理
大数据-84 Spark 集群 RDD创建 RDD-Transformation操作算子 详解(二)
大数据-84 Spark 集群 RDD创建 RDD-Transformation操作算子 详解(二)
132 4
|
12月前
|
存储 缓存 分布式计算
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
149 4
|
11月前
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
192 0
|
8月前
|
分布式计算 Spark
【赵渝强老师】Spark RDD的依赖关系和任务阶段
Spark RDD之间的依赖关系分为窄依赖和宽依赖。窄依赖指父RDD的每个分区最多被一个子RDD分区使用,如map、filter操作;宽依赖则指父RDD的每个分区被多个子RDD分区使用,如分组和某些join操作。窄依赖任务可在同一阶段完成,而宽依赖因Shuffle的存在需划分不同阶段执行。借助Spark Web Console可查看任务的DAG图及阶段划分。
309 15
|
8月前
|
存储 缓存 分布式计算
【赵渝强老师】Spark RDD的缓存机制
Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。
163 0
【赵渝强老师】Spark RDD的缓存机制
|
12月前
|
存储 缓存 分布式计算
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
136 4
|
12月前
|
JSON 分布式计算 大数据
大数据-85 Spark 集群 RDD创建 RDD-Action Key-Value RDD详解 RDD的文件输入输出
大数据-85 Spark 集群 RDD创建 RDD-Action Key-Value RDD详解 RDD的文件输入输出
133 1
|
12月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
134 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
12月前
|
消息中间件 分布式计算 Kafka
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
132 0

热门文章

最新文章