python模块介绍- SocketServer 网络服务框架

简介: 来源:https://my.oschina.net/u/1433482/blog/190612摘要: SocketServer简化了网络服务器的编写。它有4个类:TCPServer,UDPServer,UnixStreamServer,UnixDatagramServer。

来源:https://my.oschina.net/u/1433482/blog/190612

摘要: SocketServer简化了网络服务器的编写。它有4个类:TCPServer,UDPServer,UnixStreamServer,UnixDatagramServer。这4个类是同步进行处理的,另外通过ForkingMixIn和ThreadingMixIn类来支持异步。 创建服务器的步骤。首先,你必须创建一个请求处理类,它是BaseRequestHandler的子类并重载其handle()方法。其次,你必须实例化一个服务器类,传入服务器的地址和请求处理程序类。最后,调用handle_request()(一般是调用其他事件循环或者使用select())或serve_forever()...

 

SocketServer简化了网络服务器的编写。它有4个类:TCPServer,UDPServer,UnixStreamServer,UnixDatagramServer。这4个类是同步进行处理的,另外通过ForkingMixIn和ThreadingMixIn类来支持异步。

创建服务器的步骤。首先,你必须创建一个请求处理类,它是BaseRequestHandler的子类并重载其handle()方法。其次,你必须实例化一个服务器类,传入服务器的地址和请求处理程序类。最后,调用handle_request()(一般是调用其他事件循环或者使用select())或serve_forever()。

集成ThreadingMixIn类时需要处理异常关闭。daemon_threads指示服务器是否要等待线程终止,要是线程互相独立,必须要设置为True,默认是False。

无论用什么网络协议,服务器类有相同的外部方法和属性。

该模块在python3中已经更名为socketserver。

服务器类型

5种类型:BaseServer,TCPServer,UnixStreamServer,UDPServer,UnixDatagramServer。 注意:BaseServer不直接对外服务。

服务器对象

  • class SocketServer.BaseServer:这是模块中的所有服务器对象的超类。它定义了接口,如下所述,但是大多数的方法不实现,在子类中进行细化。

  • BaseServer.fileno():返回服务器监听套接字的整数文件描述符。通常用来传递给select.select(), 以允许一个进程监视多个服务器。

  • BaseServer.handle_request():处理单个请求。处理顺序:get_request(), verify_request(), process_request()。如果用户提供handle()方法抛出异常,将调用服务器的handle_error()方法。如果self.timeout内没有请求收到, 将调用handle_timeout()并返回handle_request()。

  • BaseServer.serve_forever(poll_interval=0.5): 处理请求,直到一个明确的shutdown()请求。每poll_interval秒轮询一次shutdown。忽略self.timeout。如果你需要做周期性的任务,建议放置在其他线程。

  • BaseServer.shutdown():告诉serve_forever()循环停止并等待其停止。python2.6版本。

  • BaseServer.address_family: 地址家族,比如socket.AF_INET和socket.AF_UNIX。

  • BaseServer.RequestHandlerClass:用户提供的请求处理类,这个类为每个请求创建实例。

  • BaseServer.server_address:服务器侦听的地址。格式根据协议家族地址的各不相同,请参阅socket模块的文档。

  • BaseServer.socketSocket:服务器上侦听传入的请求socket对象的服务器。

服务器类支持下面的类变量:

  • BaseServer.allow_reuse_address:服务器是否允许地址的重用。默认为false ,并且可在子类中更改。

  • BaseServer.request_queue_size

请求队列的大小。如果单个请求需要很长的时间来处理,服务器忙时请求被放置到队列中,最多可以放request_queue_size个。一旦队列已满,来自客户端的请求将得到 “Connection denied”错误。默认值通常为5 ,但可以被子类覆盖。

  • BaseServer.socket_type:服务器使用的套接字类型; socket.SOCK_STREAM和socket.SOCK_DGRAM等。

  • BaseServer.timeout:超时时间,以秒为单位,或 None表示没有超时。如果handle_request()在timeout内没有收到请求,将调用handle_timeout()。

下面方法可以被子类重载,它们对服务器对象的外部用户没有影响。

  • BaseServer.finish_request():实际处理RequestHandlerClass发起的请求并调用其handle()方法。 常用。

  • BaseServer.get_request():接受socket请求,并返回二元组包含要用于与客户端通信的新socket对象,以及客户端的地址。

  • BaseServer.handle_error(request, client_address):如果RequestHandlerClass的handle()方法抛出异常时调用。默认操作是打印traceback到标准输出,并继续处理其他请求。

  • BaseServer.handle_timeout():超时处理。默认对于forking服务器是收集退出的子进程状态,threading服务器则什么都不做。

  • BaseServer.process_request(request, client_address) :调用finish_request()创建RequestHandlerClass的实例。如果需要,此功能可以创建新的进程或线程来处理请求,ForkingMixIn和ThreadingMixIn类做到这点。常用。

  • BaseServer.server_activate():通过服务器的构造函数来激活服务器。默认的行为只是监听服务器套接字。可重载。

  • BaseServer.server_bind():通过服务器的构造函数中调用绑定socket到所需的地址。可重载。

  • BaseServer.verify_request(request, client_address):返回一个布尔值,如果该值为True ,则该请求将被处理,反之请求将被拒绝。此功能可以重写来实现对服务器的访问控制。默认的实现始终返回True。client_address可以限定客户端,比如只处理指定ip区间的请求。 常用。

请求处理器

处理器接收数据并决定如何操作。它负责在socket层之上实现协议(i.e., HTTP, XML-RPC, or AMQP),读取数据,处理并写反应。可以重载的方法如下:

  • setup(): 准备请求处理. 默认什么都不做,StreamRequestHandler中会创建文件类似的对象以读写socket.

  • handle(): 处理请求。解析传入的请求,处理数据,并发送响应。默认什么都不做。常用变量:self.request,self.client_address,self.server。

  • finish(): 环境清理。默认什么都不做,如果setup产生异常,不会执行finish。

通常只需要重载handle。self.request的类型和数据报或流的服务不同。对于流服务,self.request是socket 对象;对于数据报服务,self.request是字符串和socket 。可以在子类StreamRequestHandler或DatagramRequestHandler中重载,重写setup()和finish() ,并提供self.rfile和self.wfile属性。 self.rfile和self.wfile可以读取或写入,以获得请求数据或将数据返回到客户端。

Echo实例

TCPServer

TCPServer.py

import SocketServerclass MyTCPHandler(SocketServer.BaseRequestHandler):
    """
    The RequestHandler class for our server.

    It is instantiated once per connection to the server, and must
    override the handle() method to implement communication to the
    client.
    """

    def handle(self):         # self.request is the TCP socket connected to the client         self.data = self.request.recv(1024).strip()         print "{} wrote:".format(self.client_address[0])         print self.data        # just send back the same data, but upper-cased         self.request.sendall(self.data.upper())if __name__ == "__main__":     HOST, PORT = "localhost", 9999     # Create the server, binding to localhost on port 9999     server = SocketServer.TCPServer((HOST, PORT), MyTCPHandler)     # Activate the server; this will keep running until you     # interrupt the program with Ctrl-C     server.serve_forever()

另外一种方式是使用流,一次读一行。

class MyTCPHandler(SocketServer.StreamRequestHandler):     def handle(self):         # self.rfile is a file-like object created by the handler;         # we can now use e.g. readline() instead of raw recv() calls         self.data = self.rfile.readline().strip()         print "{} wrote:".format(self.client_address[0])         print self.data        # Likewise, self.wfile is a file-like object used to write back         # to the client         self.wfile.write(self.data.upper())

客户端:

import socketimport sysHOST, PORT = "localhost", 9999data = " ".join(sys.argv[1:])# Create a socket (SOCK_STREAM means a TCP socket)sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)try:     # Connect to server and send data     sock.connect((HOST, PORT))     sock.sendall(data + "\n")     # Receive data from the server and shut down     received = sock.recv(1024)finally:     sock.close()print "Sent:     {}".format(data)print "Received: {}".format(received)

《The Python Standard Library by Example 2011》有更详细的echo实例,参见11.3.5部分。 执行结果:

python TCPServer.py 
127.0.0.1 wrote: hello world with TCP 127.0.0.1 wrote: python is nice# python TCPClient.py  Sent:      Received:  # python TCPClient.py hello world with TCPSent:     hello world with TCP Received: HELLO WORLD WITH TCP# python TCPClient.py python is niceSent:     python is nice Received: PYTHON IS NICE

UDPServer

UDPServer.py

import SocketServerclass MyUDPHandler(SocketServer.BaseRequestHandler):
    """
    This class works similar to the TCP handler class, except that
    self.request consists of a pair of data and client socket, and since
    there is no connection the client address must be given explicitly
    when sending data back via sendto().
    """

    def handle(self):         data = self.request[0].strip()         socket = self.request[1]         print "{} wrote:".format(self.client_address[0])         print data         socket.sendto(data.upper(), self.client_address)if __name__ == "__main__":     HOST, PORT = "localhost", 9999     server = SocketServer.UDPServer((HOST, PORT), MyUDPHandler)     server.serve_forever()

UDPClient.py

import socketimport sysHOST, PORT = "localhost", 9999data = " ".join(sys.argv[1:])# SOCK_DGRAM is the socket type to use for UDP socketssock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)# As you can see, there is no connect() call; UDP has no connections.# Instead, data is directly sent to the recipient via sendto().sock.sendto(data + "\n", (HOST, PORT))received = sock.recv(1024)print "Sent:     {}".format(data)print "Received: {}".format(received)

执行和UDP类似。

异步

ThreadingMixIn的例子:

import socketimport threadingimport SocketServerclass ThreadedTCPRequestHandler(SocketServer.BaseRequestHandler):

    def handle(self):         data = self.request.recv(1024)         cur_thread = threading.current_thread()         response = "{}: {}".format(cur_thread.name, data)         self.request.sendall(response)class ThreadedTCPServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer):     passdef client(ip, port, message):     sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)     sock.connect((ip, port))     try:         sock.sendall(message)         response = sock.recv(1024)         print "Received: {}".format(response)     finally:         sock.close()if __name__ == "__main__":     # Port 0 means to select an arbitrary unused port     HOST, PORT = "localhost", 0     server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler)     ip, port = server.server_address    # Start a thread with the server -- that thread will then start one     # more thread for each request     server_thread = threading.Thread(target=server.serve_forever)     # Exit the server thread when the main thread terminates     server_thread.daemon = True     server_thread.start()     print "Server loop running in thread:", server_thread.name     client(ip, port, "Hello World 1")     client(ip, port, "Hello World 2")     client(ip, port, "Hello World 3")     server.shutdown()

执行结果:

$ python ThreadedTCPServer.py
Server loop running in thread: Thread-1
Received: Thread-2: Hello World 1 Received: Thread-3: Hello World 2 Received: Thread-4: Hello World 3

ForkingMixIn的使用方法类似,只不过是用进程代替了线程。《The Python Standard Library by Example 2011》中有相关实例。

本文地址

参考资料

目录
相关文章
|
14天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
101 63
|
7天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
62 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
16天前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
16天前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
14天前
|
人工智能 自然语言处理
WebDreamer:基于大语言模型模拟网页交互增强网络规划能力的框架
WebDreamer是一个基于大型语言模型(LLMs)的网络智能体框架,通过模拟网页交互来增强网络规划能力。它利用GPT-4o作为世界模型,预测用户行为及其结果,优化决策过程,提高性能和安全性。WebDreamer的核心在于“做梦”概念,即在实际采取行动前,用LLM预测每个可能步骤的结果,并选择最有可能实现目标的行动。
38 1
WebDreamer:基于大语言模型模拟网页交互增强网络规划能力的框架
|
7天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
26 3
|
12天前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
29 6
|
15天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
42 8
|
14天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
16天前
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性