机器学习基石--学习笔记01--linear hard SVM

简介:

背景

支持向量机(SVM)背后的数学知识比较复杂,之前尝试过在网上搜索一些资料自学,但是效果不佳。所以,在我的数据挖掘工具箱中,一直不会使用SVM这个利器。最近,台大林轩田老师在Coursera上的机器学习技法课程上有很详细的讲授SVM的原理,所以机会难得,一定要好好把握这次机会,将SVM背后的原理梳理清楚并记录下来。这篇文章总结第一讲linear hard SVM的相关内容。

   

最好的分割线

之前有讲过PLA,即在线性可分的数据中,找到一条线,能够区分开正负样本,如下所示:

上面三条线,都是PLA的解,但是哪条才是最好的呢?凭直觉而言,最右边是最好的,因为右边第三条对噪声的容忍度最高。

上图中灰色区域是噪声,区域越大,噪声越大。可以发现,最右边可以容忍的噪声是最大。现在是以点的视角来观察,下面以线的视角观察,

同样的,最右边的线扩展后得到的"垫子"最厚。"垫子"的厚度通常叫做margin(边缘)。垫子扩展到最近的正负样本就停止扩展,这些在垫子边缘上的正负样本叫做支持向量(每个样本就是一个向量)。

   

问题来了

知道了支持向量机的定义和优点后,那么问题来了,我们要解一个什么问题?

形式化的问题定义如下

如果符合上面条件的w(平面法向量)和b(平面截距)存在,由于平面公式可以伸缩(即wTx+b=0与3wTx+3b=0表示同一个平面),所以总可以找到一组w*和b*,使得min y(w*x+b*) = 1,那么有

经过上面的平面缩放变化,问题可以简化为如下形式

是不是看起来简单多了。

   

二次规划

为了进一步简化计算,将目标函数经过一番变化,可以得到如下利于优化的形式

这个问题形式和二次规划(线性规划的亲戚,)一致,所以可以使用二次规划的方法求解。二次规划的一般形式如下:

将linear hard SVM的求解公司套用QP一般形式,接下来就可以通过任何实现QP解法的工具计算求解,这里略去具体的变量映射关系,有兴趣的读者可以尝试。对于非线性问题,可以通过对x做二次转化或其他转化,然后求解。

   

VC维度

相比较PLA的平面,linear hard SVM得到的平面结果更苛刻,

由于有"厚垫子",linear hard SVM不能shatter任意3个inputs,这说明有更少的dichotomies,更小的VC维度,也就有更好的泛化效果。同时,如果使用特征转换,可以使linear hard SVM进行一些更精细的分类。

   

总结

Linear hard SVM的解法中需要训练数据线性可分,然后通过缩放平面和等价转换,将原始问题转成QP问题求解。数据线性可分在实际情况中很难出现,所以linear hard SVM的应用价值比较有限。同时,在特征转换时,将原始数据映射到其他空间的计算无法省略(好像是废话)。接下来课程中,会使用一些更有趣的方法解决这两个问题,敬请期待。

声明:如有转载本博文章,请注明出处。您的支持是我的动力!文章部分内容来自互联网,本人不负任何法律责任。

本文转自bourneli博客园博客,原文链接:http://www.cnblogs.com/bourneli/p/4198839.html ,如需转载请自行联系原作者
相关文章
|
6月前
|
机器学习/深度学习 Python
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-4
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
|
6月前
|
机器学习/深度学习 数据采集 算法
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
|
2月前
|
机器学习/深度学习 Python
训练集、测试集与验证集:机器学习模型评估的基石
在机器学习中,数据集通常被划分为训练集、验证集和测试集,以评估模型性能并调整参数。训练集用于拟合模型,验证集用于调整超参数和防止过拟合,测试集则用于评估最终模型性能。本文详细介绍了这三个集合的作用,并通过代码示例展示了如何进行数据集的划分。合理的划分有助于提升模型的泛化能力。
|
6月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第27天】在数据科学和人工智能的领域中,支持向量机(SVM)是一种强大的监督学习模型,它基于统计学习理论中的VC维理论和结构风险最小化原理。本文将详细介绍SVM的工作原理、核心概念以及如何在实际问题中应用该算法进行分类和回归分析。我们还将讨论SVM面临的挑战以及如何通过调整参数和核技巧来优化模型性能。
|
3月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
74 3
|
3月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
160 2
|
3月前
|
机器学习/深度学习 算法
【机器学习】解释对偶的概念及SVM中的对偶算法?(面试回答)
解释了对偶的概念,指出对偶性在优化问题中的重要性,尤其是在强对偶性成立时可以提供主问题的最优下界,并且详细阐述了支持向量机(SVM)中对偶算法的应用,包括如何将原始的最大间隔优化问题转换为对偶问题来求解。
87 2
|
3月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
62 1
|
4月前
|
机器学习/深度学习 算法 数据可视化
Fisher模型在统计学和机器学习领域通常指的是Fisher线性判别分析(Fisher's Linear Discriminant Analysis,简称LDA)
Fisher模型在统计学和机器学习领域通常指的是Fisher线性判别分析(Fisher's Linear Discriminant Analysis,简称LDA)
|
6月前
|
机器学习/深度学习 数据采集 算法
深入理解并应用机器学习算法:支持向量机(SVM)
【5月更文挑战第13天】支持向量机(SVM)是监督学习中的强分类算法,用于文本分类、图像识别等领域。它寻找超平面最大化间隔,支持向量是离超平面最近的样本点。SVM通过核函数处理非线性数据,软间隔和正则化避免过拟合。应用步骤包括数据预处理、选择核函数、训练模型、评估性能及应用预测。优点是高效、鲁棒和泛化能力强,但对参数敏感、不适合大规模数据集且对缺失数据敏感。理解SVM原理有助于优化实际问题的解决方案。
下一篇
无影云桌面