深入浅出TCP协议的三次握手过程

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介:

TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接:

每一次TCP连接都需要三个阶段:连接建立、数据传送和连接释放。“三次握手”就发生在连接建立阶段。

1.三次握手(three times handshake)

所谓的“三次握手”即对每次发送的数据量跟踪进行协商使数据段的发送和接收同步,以及根据所接收到的数据量来确定数据发送、接收完毕后何时撤消联系,并建立虚连接。

第一次握手:主机A发送位码syn=1,随机产生seq number=随机序列的数据包到服务器,主机B由SYN=1知道,A要求建立联机;

第二次握手:主机B收到请求后要确认联机信息,向A发送ack number=(主机A的seq+1),syn=1,ack=1,随机产生seq=随机序列的包;

第三次握手:主机A收到后检查ack number是否正确,即第一次发送的seq number+1,以及位码ack是否为1,

若正确,主机A会再发送ack number=(主机B的seq+1),ack=1,主机B收到后确认seq值与ack=1则连接建立成功。

完成三次握手,主机A与主机B开始传送数据。

(1)位码

位码即tcp标志位,有6种标示:

SYN(synchronous建立联机)

ACK(acknowledgement 确认)

PSH(push传送) FIN(finish结束)

RST(reset重置) URG(urgent紧急)

一个完整的三次握手也就是 请求---应答---再次确认

(2)过程图解

下面的图片转自论坛,应该是wireshark抓包:

一个三次握手的过程(图1,图2)

 (图1)


(图2)
 

第一次握手的标志位(图3)
我们可以看到标志位里面只有个同步位,也就是在做请求(SYN)
3 
 (图3)

第二次握手的标志位(图4)
我们可以看到标志位里面有个确认位和同步位,也就是在做应答(SYN + ACK)
4 
(图4)

第三次握手的标志位(图5)
我们可以看到标志位里面只有个确认位,也就是再做再次确认(ACK)
5 
(图5)

第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;
第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态; 第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。 完成三次握手,客户端与服务器开始传送数据。

 

2.为什么采用随机初始序列号?

从安全的角度来说,TCP序列号初始值越趋近于随机越好,算法越复杂越好。

如果不是随机产生初始序列号,黑客将会很容易的获取到你与其他主机之间通信的初始化序列号,并且伪造序列号进行攻击。

 

3.为什么是三次握手?

三次握手可以建立双向连接,两次握手只能建立一条单向的连接。
TCP三次握手最重要的目的就是建立双向连接,这样能建立可靠的信道,保证数据可靠的传输。

教科书里三次握手的意义:

《计算机网络》谢希仁著中讲“三次握手”的目的是为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误
这样说明“已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。

本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。

假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。

但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。

采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。


本文转自邴越博客园博客,原文链接:http://www.cnblogs.com/binyue/p/3992068.html,如需转载请自行联系原作者

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
12月前
|
缓存 网络协议 Linux
手把手实现tcp/ip用户态协议栈,帮你实践网络知识(网络必备,面试项目)
手把手实现tcp/ip用户态协议栈,帮你实践网络知识(网络必备,面试项目)
|
XML 存储 JSON
【面试题精讲】序列化协议对应于 TCP/IP 4 层模型的哪一层?
【面试题精讲】序列化协议对应于 TCP/IP 4 层模型的哪一层?
|
26天前
|
网络协议 算法 数据格式
【TCP/IP】UDP协议数据格式和报文格式
【TCP/IP】UDP协议数据格式和报文格式
76 3
|
26天前
|
XML JSON 网络协议
【TCP/IP】自定义应用层协议,常见端口号
【TCP/IP】自定义应用层协议,常见端口号
19 3
|
2月前
|
网络协议 网络架构 数据格式
TCP/IP基础:工作原理、协议栈与网络层
TCP/IP(传输控制协议/互联网协议)是互联网通信的基础协议,支持数据传输和网络连接。本文详细阐述了其工作原理、协议栈构成及网络层功能。TCP/IP采用客户端/服务器模型,通过四个层次——应用层、传输层、网络层和数据链路层,确保数据可靠传输。网络层负责IP寻址、路由选择、分片重组及数据包传输,是TCP/IP的核心部分。理解TCP/IP有助于深入掌握互联网底层机制。
333 2
|
6月前
|
网络协议 安全 网络安全
网络 (TCP/IP 四层协议中常见网络协议)
网络 (TCP/IP 四层协议中常见网络协议)
87 7
|
5月前
|
网络协议 网络架构
计算机网络——计算机网络体系结构(1/4)-常见的计算机网络体系结构(OSI体系、TCP/IP体系、原理体系五层协议)
计算机网络——计算机网络体系结构(1/4)-常见的计算机网络体系结构(OSI体系、TCP/IP体系、原理体系五层协议)
108 0
|
6月前
|
网络协议 Java API
深度剖析:Java网络编程中的TCP/IP与HTTP协议实践
【4月更文挑战第17天】Java网络编程重在TCP/IP和HTTP协议的应用。TCP提供可靠数据传输,通过Socket和ServerSocket实现;HTTP用于Web服务,常借助HttpURLConnection或Apache HttpClient。两者结合,构成网络服务基础。Java有多种高级API和框架(如Netty、Spring Boot)简化开发,助力高效、高并发的网络通信。
131 0
|
网络协议
百度搜索:蓝易云【四层协议:TCP/IP详解!】
现了互联网上的可靠数据传输和网络通信。每个层次都有特定的功能和协议,相互配合以实现端到端的通信。
98 0
|
网络协议 Unix 网络性能优化
两种传输层协议TCP和UDP【图解TCP/IP(笔记十二)】
两种传输层协议TCP和UDP【图解TCP/IP(笔记十二)】
159 0