超越的四个阶段

简介:

吃别人吃不了的苦

忍别人忍不住的气

做别人不能做到的事

享受别人享受不到的胜利

以上就是超越的四个阶段













本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/xiandedanteng/p/4161718.html,如需转载请自行联系原作者




相关文章
|
8月前
|
自然语言处理 物联网 异构计算
比LoRA还快50%的微调方法来了!一张3090性能超越全参调优,UIUC联合LMFlow团队提出LISA
【4月更文挑战第3天】伊利诺伊大学香槟分校和LMFlow团队推出LISA,一种新型微调技术,用于解决大型语言模型的内存消耗问题。LISA基于层重要性采样,随机冻结中间层,降低内存使用,同时提供比LoRA更快的训练速度和更高性能。实验显示,LISA在相似或更低的GPU内存消耗下,超越LoRA和全参数调优。该方法提高了资源受限环境下的微调效率,有望成为LoRA的有效替代,但仍然面临内存限制和随机性影响的问题。
216 4
比LoRA还快50%的微调方法来了!一张3090性能超越全参调优,UIUC联合LMFlow团队提出LISA
|
13天前
|
人工智能 数据安全/隐私保护
深度揭秘CoT!普林斯顿耶鲁发布最新报告:大模型既有记忆推理、也有概率推理
普林斯顿大学和耶鲁大学研究人员发布报告,探讨链式思维(CoT)提示对大型语言模型(LLM)推理能力的影响。研究通过移位密码任务,揭示了三个关键因素:任务输出概率、预训练阶段的隐性学习及中间操作数量(噪声推理)。实验使用GPT-4、Claude 3和Llama 3.1模型,发现CoT提示可显著提升模型准确性,但也存在局限性。论文地址:https://arxiv.org/abs/2407.01687。
77 29
|
3月前
|
人工智能 语音技术 UED
仅用4块GPU、不到3天训练出开源版GPT-4o,这是国内团队最新研究
【10月更文挑战第19天】中国科学院计算技术研究所提出了一种名为LLaMA-Omni的新型模型架构,实现与大型语言模型(LLMs)的低延迟、高质量语音交互。该模型集成了预训练的语音编码器、语音适配器、LLM和流式语音解码器,能够在不进行语音转录的情况下直接生成文本和语音响应,显著提升了用户体验。实验结果显示,LLaMA-Omni的响应延迟低至226ms,具有创新性和实用性。
121 1
|
3月前
|
机器学习/深度学习 自然语言处理 知识图谱
|
6月前
|
Web App开发
生成式模型不只会模仿!哈佛、UCSB等最新成果:性能可超越训练集专家水平
【7月更文挑战第23天】研究人员从哈佛大学、UC Santa Barbara等机构展示了生成式模型的新突破:在特定任务上实现超越训练集专家水平的性能。通过“低温度采样”减少模型不确定性,实验中一个名为ChessFormer的模型在下棋任务上表现出了超越性,即性能超过了训练集中专家的平均水平。这项工作揭示了生成式模型在特定条件下实现超越的可能性,为该领域的研究和应用提供了新视角。[论文](https://arxiv.org/pdf/2406.11741)
44 2
|
6月前
|
自然语言处理
AIGC使用问题之GPT-1如何优化目标函数,如何做模型微调
AIGC使用问题之GPT-1如何优化目标函数,如何做模型微调
|
7月前
|
机器学习/深度学习 人工智能 算法
全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型
【6月更文挑战第4天】普林斯顿大学陈丹琦团队推出SimPO,一种超越DPO的强化学习优化算法,旨在优化大型语言模型以符合人类价值观。SimPO通过序列平均对数概率作为奖励,提高计算效率并减少对参考模型的依赖。在多基准测试中,SimPO表现优秀,尤其在AlpacaEval 2和Arena-Hard上大幅超越现有方法。团队还基于Llama3-8B-Instruct创建了最强8B开源模型,推动AI技术发展。尽管存在超参数敏感性等挑战,SimPO仍为AI优化提供新途径。[论文链接](https://arxiv.org/pdf/2405.14734)
106 1
|
7月前
|
机器学习/深度学习 自然语言处理 物联网
ICML 2024:脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了
【6月更文挑战第4天】在ICML 2024上,研究团队提出了傅立叶变换微调(FourierFT),一种减少训练参数的新方法,替代了依赖LoRA的微调。FourierFT通过学习权重变化矩阵的稀疏频谱系数,实现了LFMs的高效微调。在多项任务上,FourierFT展示出与LoRA相当或更优的性能,参数量却大幅减少,如在LLaMA2-7B模型上,仅需0.064M参数,对比LoRA的33.5M。广泛实验验证了其在NLP和CV任务上的效果,但未来还需探索其适用性和泛化能力。论文链接:[arxiv.org/abs/2405.03003](https://arxiv.org/abs/2405.03003)
146 0
|
8月前
|
机器学习/深度学习 人工智能
大模型架构将迎来除 Transformer 之外的突破
大模型架构将迎来除 Transformer 之外的突破
146 2
大模型架构将迎来除 Transformer 之外的突破
|
人工智能 自然语言处理 物联网
解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题
解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题
解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题