Numpy:高维数组(矩阵)

简介: numpy库为python提供了很多方便的数学计算方法,尤其是提供了数组,极大方便了使用python进行矩阵运算,使其在机器学习和深度学习中得到有效利用,本文详细介绍一下高维矩阵问题。 平时我们使用最多的就是一,二维和三维矩阵,以前我容易将其跟立体几何联系起来。

numpy库为python提供了很多方便的数学计算方法,尤其是提供了数组,极大方便了使用python进行矩阵运算,使其在机器学习和深度学习中得到有效利用,本文详细介绍一下高维矩阵问题。

平时我们使用最多的就是一,二维和三维矩阵,以前我容易将其跟立体几何联系起来。后来发现这样是非常错误的,因为再高一点的维度就不能想象了。所以,按照矩阵的形式,从外向内,逐层分解才能掌握好矩阵。

正文:

将以下代码敲一遍就会豁然开朗:

import numpy as np

a=np.arange(10)
print(a)
print(a[0:9])  # 包头不包尾
print(a[3:6])
print(a[:5])  # :前面不写就是从下标为0开始
print(a[5:])  # :后面不写就是一直到最后一个元素
print(a[:])   # :前后都不写就是从头到尾



print('---------------')
'''
多维矩阵按括号的层级,从外向内,一次是第1,2,3,...维

b[]内用逗号将各维分开,分别代表第1,2,3...维元素

每个维度上都有自己的下标,也可以用':'取部分
'''
b= np.mat(np.arange(20).reshape(4,5))
print(b)
print(b[1:3,2:5])   # 先取第一维中下标为1,2的2部分,再取第二维中下标为2,3,4的3部分
print(b[:2,2:])     # 同理,前面不写从头开始,后面不写一直到末尾
print(b[:2,3])      # 当然,也可以在某维度上只取一行

print('-----------------')
c= np.arange(60).reshape(3,4,5)
print(c)
print(c[:2,2:4,1:4])  # 从外向内一层一层的,不改变矩阵维度

print('-------------------')
d= np.arange(240).reshape(3,4,5,4)
print(d)
print(d[:2,1:3,2:5,1:3])
目录
相关文章
|
3月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
387 0
|
计算机视觉 Python
PIL图像转换为Numpy数组:技术与案例详解
本文介绍了如何将PIL图像转换为Numpy数组,以便利用Numpy进行数学运算和向量化操作。首先简要介绍了PIL和Numpy的基本功能,然后详细说明了转换过程,包括导入库、打开图像文件、使用`np.array()`或`np.asarray()`函数进行转换,并通过打印数组形状验证转换结果。最后,通过裁剪、旋转和缩放等案例展示了转换后的应用,以及如何将Numpy数组转换回PIL图像。此外,还介绍了处理base64编码图像的完整流程。
537 4
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
473 10
|
Python
Numpy学习笔记(四):如何将数组升维、降维和去重
本文介绍了如何使用NumPy库对数组进行升维、降维和去重操作。
279 1
|
Python
使用 NumPy 进行数组操作的示例
使用 NumPy 进行数组操作的示例
264 2
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
476 4
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
746 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
机器学习/深度学习 并行计算 调度
CuPy:将 NumPy 数组调度到 GPU 上运行
CuPy:将 NumPy 数组调度到 GPU 上运行
613 1
|
API Python
Numpy 数组的一些集合操作
Numpy 数组的一些集合操作
217 0
|
3月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
220 0