计算机视觉标准视频

简介:

1. PETS2001的测试视频

内容如下,可以得到如下所示5个DATASET,有训练和测试视频:

ftp://ftp.cs.rdg.ac.uk/pub/PETS2001/  direct 
532 B  2001-07-25welcome.msg  5 mirrors

6 B  2006-10-24WWW  2 mirrors

532 B  2001-07-25PETS2001_README  2 mirrors

0  2001-12-11DoNotDownLoadThisFile  2 mirrors

[DIR]DATASET5/  direct  2 twin directories

[DIR]DATASET4/  direct  2 twin directories

[DIR]DATASET3/  direct  6 twin directories

[DIR]DATASET2/  direct  6 twin directories

[DIR]DATASET1/  direct  6 twin directories

0  2001-06-23.chunkdesc  2 mirrors

0  2001-06-23.bufferloc  2 mirrors
 

2. 阴影检测(Shadow Detection)测试视频及CVPR-ATON 阴影检测相关论文

http://cvrr.ucsd.edu/aton/shadow/

在下面原始movie可以下载到:Highway、Campus、Laboratory、Intelligent Room,这些视频。

Technical Papers 
A. Prati, I. Mikic, M. Trivedi, R. Cucchiara, "Detecting Moving Shadows: Formulation, Algorithms and Evaluation" (Under Review June 2001) - Survey 
I. Mikic, P. Cosman, G.. Kogut, M. Trivedi, "Moving Shadow and Object Detection in Traffic Scenes", I:260px;pnce on Pattern Recognition, September 2000, pp. 321-324 vol. 1 
R. Cucchiara, C. Grana, M. Piccardi, A. Prati, "Detecting objects, shadows and ghosts in video streams by exploiting color and motion information", Appearing in Proceedings of 11th International Conference on Image Analysis and Processing (ICIAP 2001), September 2001. 
M. Trivedi, I. Mikic, G. Kogut, "Distributed Video Networks for Incident Detection and Management", IEEE Conference on Intelligent Transportation Systems, Dearborn, Michigan, October 2000. 
Testbed Data

Comparative Movies (Highway I, Intelligent Room - AVIs) 
Raw Movies (Highway I, Highway II, Campus, Laboratory, Intelligent Room - AVIs) 
Manually Segmented Images (Ground Truth - Zipped BMPs) 
 

3. IBM人类视觉研究中心监视系统性能评价提供的视频

http://www.research.ibm.com/peoplevision/performanceevaluation.html

这个你看了一定欣喜若狂,一大票的视频,任你选择,不用再发愁找不到视频了!

Performance Evaluation of Surveillance Systems

Effectively evaluating the performance of moving object detection and tracking algorithms is in an important step towards attaining robust digital video surveillance systems with sufficient accuracy for practical applications. As systems be5�kc�j.6d achieve greater robustness, the ability to quantitatively assess performance is needed in order to continuously improve performance. To this end, we are providing video sequences and ground truth annotations for performance evaluation.

Ground Truth sequences have extension .pvann and are xml files.

An explanation of the ground truth procedure can be found in the

paper [1] .

Performance metrics and an evaluation of the IBM Smart Surveillance System can also be found in this publication.

1. Outdoor Sequences ( 4 videos from PET2001 with ground truth )

    PetsD1TeC1.avi

    PetsD1TeC1.pvann    PetsD1TeC2.avi

    PetsD1TeC2.pvann    PetsD2TeC1.avi

    PetsD2TeC1.pvann    PetsD2TeC2.avi

    PetsD2TeC2.pvann

2. Indoor Sequences  (11 videoswith ground truth)

    IndoorGTTest1.avi

    IndoorGTTest1.pvann

    IndoorGTTest2.avi

    IndoorGTTest2.pvann

    ThreePerson_Circles_Comp_0_Quad0.avi

    ThreePerson_Circles_Comp_0_Quad0.pvann

    ThreePerson_Circles_Comp_0_Quad2.avi

    ThreePerson_Circles_Comp_0_Quad2.pvann

    ThreePerson_Circles_Comp_0_Quad3.avi

    ThreePerson_Circles_Comp_0_Quad3.pvann

    ThreePerson_Together_Split_Comp_0_Quad0.avi

    ThreePerson_Together_Split_Comp_0_Quad0.pvann

    ThreePerson_Together_Split_Comp_0_Quad2.avi

    ThreePerson_Together_Split_Comp_0_Quad2.pvann

    ThreePerson_Together_Split_Comp_0_Quad3.avi

    ThreePerson_Together_Split_Comp_0_Quad3.pvann

    TwoPerson_Line_Circle_Comp_0_Quad0.avi

    TwoPerson_Line_Circle_Comp_0_Quad0.pvann

    TwoPerson_Line_Circle_Comp_0_Quad2.avi

    TwoPerson_Line_Circle_Comp_0_Quad2.pvann

    TwoPerson_Line_Circle_Comp_0_Quad3.avi

    TwoPerson_Line_Circle_Comp_0_Quad3.pvann

[1] Performance Evaluation of Surveillance Systems Under Varying Conditions

Lisa M. Brown, Andrew W. Senior, Ying-li Tian, Jonathan Connell, Arun Hampapur, Chiao-fe Shu, Hans Merkl, and Max Lu

IEEE Int'l Workshop on Performance Evaluation of Tracking and Surveillance, Colorado

Jan., 2005 .  PDF

Other Research Areas:

Robust Background Subtraction 
Salient Motion Detection 
Object Classification 
2D Tracking 
3D Multi-Persoculated Human Body Tracking 
Active Head Tracking 
Coarse Head Pose Estimation 
Position Independent Absolute Head Pose Estimation 
Face Cataloger 
Video Privacy 
Multi-scale Tracking & Index Browser 
Real Time Alerts 
Middleware for Large Scale Surveillance (MILS) 



本文转自einyboy博客园博客,原文链接:http://www.cnblogs.com/einyboy/archive/2012/08/03/2621065.html,如需转载请自行联系原作者。


目录
相关文章
|
5月前
|
机器学习/深度学习 算法 数据可视化
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
|
2月前
|
机器学习/深度学习 并行计算 算法
Ebsynth:利用图像处理和计算机视觉的视频风格转换技术工具
EbSynth 是一款基于视频风格转换技术的工具,专注于将静态艺术风格应用到视频中的每一帧,使视频具有独特的艺术效果。它利用图像处理和计算机视觉技术,将用户提供的参考图像或绘画风格转换为视频效果。
81 2
|
5月前
|
机器学习/深度学习 Ubuntu Linux
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-1
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
|
4月前
|
编解码 机器人 测试技术
2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
121 8
|
3月前
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
机器学习/深度学习 传感器 计算机视觉
计算机视觉|视频图像的预处理
计算机视觉|视频图像的预处理
234 0
|
机器学习/深度学习 传感器 编解码
【车道线检测】基于计算机视觉实现车道线视频检测附matlab代码
【车道线检测】基于计算机视觉实现车道线视频检测附matlab代码
|
机器学习/深度学习 传感器 编解码
【车道线检测】基于计算机视觉实现车道线视频检测附matlab代码
【车道线检测】基于计算机视觉实现车道线视频检测附matlab代码
|
机器学习/深度学习 人工智能 计算机视觉
《视频云+人工智能计算机视觉和机器学习在消费级视频中的应用》电子版地址
视频云+人工智能计算机视觉和机器学习在消费级视频中的应用
101 0
《视频云+人工智能计算机视觉和机器学习在消费级视频中的应用》电子版地址
|
机器学习/深度学习 传感器 监控
【视频检测】基于计算机视觉实现目标检测附matlab代码
【视频检测】基于计算机视觉实现目标检测附matlab代码

热门文章

最新文章

下一篇
无影云桌面