整数集合

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介:
整数集合的升级
升级整数集合并添加新元素的步骤:

1、根据新元素的类型, 扩展整数集合底层数组的空间大小, 并为新元素分配空间。
2、将底层数组现有的所有元素都转换成与新元素相同的类型, 并将类型转换后的元素放置到正确的位上, 而且在放置元素的过程中, 需要继续维持底层数组的有序性质不变。
3、将新元素添加到底层数组里面。
4、改变程序将整数集合 encoding 属性的值。
升级之后新元素的摆放位置

因为引发升级的新元素的长度总是比整数集合现有所有元素的长度都大, 所以这个新元素的值要么就大于所有现有元素, 要么就小于所有现有元素:

在新元素小于所有现有元素的情况下, 新元素会被放置在底层数组的最开头(索引 0 );
在新元素大于所有现有元素的情况下, 新元素会被放置在底层数组的最末尾(索引 length-1 )。
整数集合的降级
整数集合不支持降级操作, 一旦对数组进行了升级, 编码就会一直保持升级后的状态。

对象
查看对象类型type

type test

类型常量 对象的名称 TYPE 命令的输出
REDIS_STRING 字符串对象 string
REDIS_LIST 列表对象 list
REDIS_HASH 哈希对象 hash
REDIS_SET 集合对象 set
REDIS_ZSET 有序集合对象 zset
查看数据库值对象OBJECT ENCODING key

object encloding test

对象所使用的底层数据结构 编码常量 OBJECT ENCODING 命令输出
整数 REDIS_ENCODING_INT "int"
embstr 编码的简单动态字符串(SDS)REDIS_ENCODING_EMBSTR "embstr"
简单动态字符串 REDIS_ENCODING_RAW "raw"
字典 REDIS_ENCODING_HT "hashtable"
双端链表 REDIS_ENCODING_LINKEDLIST "linkedlist"
压缩列表 REDIS_ENCODING_ZIPLIST "ziplist"
整数集合 REDIS_ENCODING_INTSET "intset"
跳跃表和字典 REDIS_ENCODING_SKIPLIST "skiplist"
字符串对象
embstr 编码的字符串对象在执行命令时, 产生的效果和 raw 编码的字符串对象执行命令时产生的效果是相同的, 但使用 embstr 编码的字符串对象来保存短字符串值有以下好处:

embstr 编码将创建字符串对象所需的内存分配次数从 raw 编码的两次降低为一次。
释放 embstr 编码的字符串对象只需要调用一次内存释放函数, 而释放 raw 编码的字符串对象需要调用两次内存释放函数。
因为 embstr 编码的字符串对象的所有数据都保存在一块连续的内存里面, 所以这种编码的字符串对象比起 raw 编码的字符串对象能够更好地利用缓存带来的优势。
embstr 编码的字符串对象实际上是只读的: 当我们对 embstr 编码的字符串对象执行任何修改命令时, 程序会先将对象的编码从 embstr 转换成 raw , 然后再执行修改命令; 因为这个原因, embstr 编码的字符串对象在执行修改命令之后, 总会变成一个 raw 编码的字符串对象。








本文转自秋楓博客园博客,原文链接:http://www.cnblogs.com/rwxwsblog/p/7612024.html,如需转载请自行联系原作者
目录
相关文章
|
7天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
17天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1327 7
|
5天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
305 130
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
4天前
|
监控 JavaScript Java
基于大模型技术的反欺诈知识问答系统
随着互联网与金融科技发展,网络欺诈频发,构建高效反欺诈平台成为迫切需求。本文基于Java、Vue.js、Spring Boot与MySQL技术,设计实现集欺诈识别、宣传教育、用户互动于一体的反欺诈系统,提升公众防范意识,助力企业合规与用户权益保护。
|
16天前
|
机器学习/深度学习 人工智能 前端开发
通义DeepResearch全面开源!同步分享可落地的高阶Agent构建方法论
通义研究团队开源发布通义 DeepResearch —— 首个在性能上可与 OpenAI DeepResearch 相媲美、并在多项权威基准测试中取得领先表现的全开源 Web Agent。
1399 87
|
4天前
|
JavaScript Java 大数据
基于JavaWeb的销售管理系统设计系统
本系统基于Java、MySQL、Spring Boot与Vue.js技术,构建高效、可扩展的销售管理平台,实现客户、订单、数据可视化等全流程自动化管理,提升企业运营效率与决策能力。
|
5天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
300 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
6天前
|
弹性计算 安全 数据安全/隐私保护
2025年阿里云域名备案流程(新手图文详细流程)
本文图文详解阿里云账号注册、服务器租赁、域名购买及备案全流程,涵盖企业实名认证、信息模板创建、域名备案提交与管局审核等关键步骤,助您快速完成网站上线前的准备工作。
234 82
2025年阿里云域名备案流程(新手图文详细流程)