大型网站架构之分布式缓存

简介:
缓存是优化网站性能的第一手段。在大型网站中,缓存通常用来保存热点数据,或者保存应用上下文相关信息。比如之前提到的session服务器集群就可以用分布式缓存来搭建。当然,分布式缓存还可用于缓存数据库中的热点数据以减轻数据库的压力。 

分布式缓存的架构方式通常有两种:一种是以JBoss为代表的需要同步的分布式缓存,一种是一MemCached为代表的不互相通信的分布式缓存。 

JBoss在所有服务器中保存相同的缓存数据,当一台服务器的数据有更新时,会同步到其他的服务器。这种所有服务器都保存相同数据的方式导致JBoss的缓存容量有限,而且同步的代价会随着服务器数量的增加而增大。因此这种方案很少在大型网站中使用。JBoss通常将应用服务器和缓存部署在同一台服务器上,如下图: 


MemCached采用一种互不通信的分布式架构,每个服务器中缓存的数据不相同。应用服务器通过一致性hash等路由算法确定数据所在位置后进行访问,缓存服务器之间互不通信,具有很好的扩展性。如下图: 
 

下面重点说下在MemCached中使用的路由算法,由于MemCached集群中不同服务器缓存的数据不同,因此应用服务器访问数据之前需要先通过路由算法确定数据所在的缓存服务器。最容易想到的路由算法是余数hash,但是在缓存系统需要扩容时,余数hash是不可用的。 

比如例子:原来有3台节点,对应的hash值为0,1,2,现在增加一台节点后变为4台节点,对应的hash值为0,1,2,3。那么0-11这12个原来已经缓存的数据,在加入新节点后的可用率为25%。就是说,向缓存系统中新加入一个节点之后,原来缓存的大部分数据变得无不可用了。这个现象在大型网站架构中是可怕的,因为新加入节点后造成的缓存低可用将导致数据库压力增大甚至有可能造成网站事故。 
因此,我们把向缓存系统中添加节点之后,能够保证已经缓存的数据仍然有效作为分布式缓存中路由算法的主要设计目标。为此,有一致性hash算法。 

一致性hash算法: 
先构造一个长度为2^32的整数环,根据节点名称的hash值(其分布范围为0~2^32-1)将缓存服务器的节点放置在这个hash环上。计算需要缓存的数据的hash值(其分布范围为0~2^32-1),然后在hash环上顺时针找距离这个hash值最近的缓存服务器节点,就是数据要缓存的目标节点。如图: 
 

一致性hash算法,有一个小小的问题。当向缓存中添加一个新的节点之后,根据一致性hash算法的规则,新添加的节点仅仅能够减轻一台原有服务器的压力,如下图:新添加的节点Node3只能缓解Node1的压力,而无法缓解Node0和Node2的压力。 
 

上面提到的添加新节点后负载不均衡的问题可以通过虚拟的手段来解决:将每台物理服务器虚拟为一组虚拟服务器,之后将这组虚拟服务器放到hash环上。采用一致性hash算法找到虚拟服务器,该虚拟服务器对应的物理服务器就是目标节点。如图: 
 

在实践中,一台物理服务器一般虚拟为一组150个虚拟服务器,具体情况再改动。 


本文转自农夫山泉别墅博客园博客,原文链接:http://www.cnblogs.com/yaowen/p/6293329.html,如需转载请自行联系原作者

相关文章
|
2月前
|
存储 缓存 NoSQL
分布式系统架构8:分布式缓存
本文介绍了分布式缓存的理论知识及Redis集群的应用,探讨了AP与CP的区别,Redis作为AP系统具备高性能和高可用性但不保证强一致性。文章还讲解了透明多级缓存(TMC)的概念及其优缺点,并详细分析了memcached和Redis的分布式实现方案。此外,针对缓存穿透、击穿、雪崩和污染等常见问题提供了应对策略,强调了Cache Aside模式在解决数据一致性方面的作用。最后指出,面试中关于缓存的问题多围绕Redis展开,建议深入学习相关知识点。
229 8
|
2天前
|
消息中间件 人工智能 监控
文生图架构设计原来如此简单之分布式服务
想象一下,当成千上万的用户同时要求AI画图,如何公平高效地处理这些请求?文生图/图生图大模型的架构设计看似复杂,实则遵循简单而有效的原则:合理排队、分工明确、防患未然。
31 14
文生图架构设计原来如此简单之分布式服务
|
5天前
|
人工智能 运维 监控
领先AI企业经验谈:探究AI分布式推理网络架构实践
当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。
|
6月前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
6月前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1
|
2月前
|
存储 Prometheus Cloud Native
分布式系统架构6:链路追踪
本文深入探讨了分布式系统中的链路追踪理论,涵盖追踪与跨度的概念、追踪系统的模块划分及数据收集的三种方式。链路追踪旨在解决复杂分布式系统中请求流转路径不清晰的问题,帮助快速定位故障和性能瓶颈。文中介绍了基于日志、服务探针和边车代理的数据收集方法,并简述了OpenTracing、OpenCensus和OpenTelemetry等链路追踪协议的发展历程及其特点。通过理解这些概念,可以更好地掌握开源链路追踪框架的使用。
119 41
|
2月前
|
存储 缓存 安全
分布式系统架构7:本地缓存
这是小卷关于分布式系统架构学习的第10篇文章,主要介绍本地缓存的基础理论。文章分析了引入缓存的利弊,解释了缓存对CPU和I/O压力的缓解作用,并讨论了缓存的吞吐量、命中率、淘汰策略等属性。同时,对比了几种常见的本地缓存工具(如ConcurrentHashMap、Ehcache、Guava Cache和Caffeine),详细介绍了它们的访问控制、淘汰策略及扩展功能。
93 6
|
2月前
|
存储 关系型数据库 分布式数据库
[PolarDB实操课] 01.PolarDB分布式版架构介绍
《PolarDB实操课》之“PolarDB分布式版架构介绍”由阿里云架构师王江颖主讲。课程涵盖PolarDB-X的分布式架构、典型业务场景(如实时交易、海量数据存储等)、分布式焦点问题(如业务连续性、一致性保障等)及技术架构详解。PolarDB-X基于Share-Nothing架构,支持HTAP能力,具备高可用性和容错性,适用于多种分布式改造和迁移场景。课程链接:[https://developer.aliyun.com/live/253957](https://developer.aliyun.com/live/253957)。更多内容可访问阿里云培训中心。
[PolarDB实操课] 01.PolarDB分布式版架构介绍
|
3月前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
109 11
|
3月前
|
设计模式 监控 Java
分布式系统架构4:容错设计模式
这是小卷对分布式系统架构学习的第4篇文章,重点介绍了三种常见的容错设计模式:断路器模式、舱壁隔离模式和重试模式。断路器模式防止服务故障蔓延,舱壁隔离模式通过资源隔离避免全局影响,重试模式提升短期故障下的调用成功率。文章还对比了这些模式的优缺点及适用场景,并解释了服务熔断与服务降级的区别。尽管技术文章阅读量不高,但小卷坚持每日更新以促进个人成长。
77 11