转自:http://blog.chinaunix.net/uid-27717694-id-3495825.html
三、串口的打开
在用户空间执行open操作的时候,就会执行uart_ops->open. Uart_ops的定义如下:
tty_open=>init_dev=>initialize_tty_struct=>tty_ldisc_assign=>
将tty_ldisc_N_TTY复制给该dev
然后tty->driver->open(tty, filp);
tty->driver为上面uart_register_driver时注册的tty_driver驱动,它的操作方法集为uart_ops.
tty_fops.tty_open=>
tty->driver->open就是uart_ops.uart_open=>uart_startup=>
port->ops->startup(port)这里port的ops就是serial_pxa_pops;也这就是该物理uart口,struct uart_port的操作函数
serial_pxa_pops.startup就是serial_pxa_startup
static const struct tty_operations uart_ops = {
.open = uart_open,
.close = uart_close,
.write = uart_write,
.put_char = uart_put_char,
.flush_chars = uart_flush_chars,
.write_room = uart_write_room,
.chars_in_buffer= uart_chars_in_buffer,
.flush_buffer = uart_flush_buffer,
.ioctl = uart_ioctl,
.throttle = uart_throttle,
.unthrottle = uart_unthrottle,
.send_xchar = uart_send_xchar,
.set_termios = uart_set_termios,
.stop = uart_stop,
.start = uart_start,
.hangup = uart_hangup,
.break_ctl = uart_break_ctl,
.wait_until_sent= uart_wait_until_sent,
#ifdef CONFIG_PROC_FS
.read_proc = uart_read_proc,
#endif
.tiocmget = uart_tiocmget,
.tiocmset = uart_tiocmset,
};
对应open的操作接口为uart_open.代码如下:
static int uart_open(struct tty_struct *tty, struct file *filp)
{
struct uart_driver *drv = (struct uart_driver *)tty->driver->driver_state;
struct uart_state *state;
int retval, line = tty->index;
BUG_ON(!kernel_locked());
pr_debug("uart_open(%d) called\n", line);
/*
* tty->driver->num won't change, so we won't fail here with
* tty->driver_data set to something non-NULL (and therefore
* we won't get caught by uart_close()).
*/
retval = -ENODEV;
if (line >= tty->driver->num)
goto fail;
/*
* We take the semaphore inside uart_get to guarantee that we won't
* be re-entered while allocating the info structure, or while we
* request any IRQs that the driver may need. This also has the nice
* side-effect that it delays the action of uart_hangup, so we can
* guarantee that info->tty will always contain something reasonable.
*/
state = uart_get(drv, line);
if (IS_ERR(state)) {
retval = PTR_ERR(state);
goto fail;
}
/*
* Once we set tty->driver_data here, we are guaranteed that
* uart_close() will decrement the driver module use count.
* Any failures from here onwards should not touch the count.
*/
tty->driver_data = state;
tty->low_latency = (state->port->flags & UPF_LOW_LATENCY) ? 1 : 0;
tty->alt_speed = 0;
state->info->tty = tty;
/*
* If the port is in the middle of closing, bail out now.
*/
if (tty_hung_up_p(filp)) {
retval = -EAGAIN;
state->count--;
mutex_unlock(&state->mutex);
goto fail;
}
/*
* Make sure the device is in D0 state.
*/
if (state->count == 1)
uart_change_pm(state, 0);
/*
* Start up the serial port.
*/
retval = uart_startup(state, 0);
/*
* If we succeeded, wait until the port is ready.
*/
if (retval == 0)
retval = uart_block_til_ready(filp, state);
mutex_unlock(&state->mutex);
/*
* If this is the first open to succeed, adjust things to suit.
*/
if (retval == 0 && !(state->info->flags & UIF_NORMAL_ACTIVE)) {
state->info->flags |= UIF_NORMAL_ACTIVE;
uart_update_termios(state);
}
fail:
return retval;
}
在这里函数里,继续完成操作的设备文件所对应state初始化.现在用户空间open这个设备了.即要对这个文件进行操作了.那uart_port也要开始工作了.即调用uart_startup()使其进入工作状态.当然,也需要初始化uart_port所对应的环形缓冲区circ_buf.即state->info-> xmit.
特别要注意,在这里将tty->driver_data = state;这是因为以后的操作只有port相关了,不需要去了解uart_driver的相关信息.
跟踪看一下里面调用的两个重要的子函数. uart_get()和uart_startup().先分析uart_get().代码如下:
static struct uart_state *uart_get(struct uart_driver *drv, int line)
{
struct uart_state *state;
int ret = 0;
state = drv->state + line;
if (mutex_lock_interruptible(&state->mutex)) {
ret = -ERESTARTSYS;
goto err;
}
state->count++;
if (!state->port || state->port->flags & UPF_DEAD) {
ret = -ENXIO;
goto err_unlock;
}
if (!state->info) {
state->info = kzalloc(sizeof(struct uart_info), GFP_KERNEL);
if (state->info) {
init_waitqueue_head(&state->info->open_wait);
init_waitqueue_head(&state->info->delta_msr_wait);
/*
* Link the info into the other structures.
*/
state->port->info = state->info;
tasklet_init(&state->info->tlet, uart_tasklet_action,
(unsigned long)state);
} else {
ret = -ENOMEM;
goto err_unlock;
}
}
return state;
err_unlock:
state->count--;
mutex_unlock(&state->mutex);
err:
return ERR_PTR(ret);
}
//从代码中可以看出.这里注要是操作是初始化state->info.注意port->info就是state->info的一个副本.即port直接通过port->info可以找到它要操作的缓存区.
//uart_startup()代码如下:
static int uart_startup(struct tty_struct *tty, struct uart_state *state, int init_hw)
{
struct uart_port *uport = state->uart_port;
struct tty_port *port = &state->port;
unsigned long page;
int retval = 0;
if (port->flags & ASYNC_INITIALIZED)
return 0;
/*
* Set the TTY IO error marker - we will only clear this
* once we have successfully opened the port. Also set
* up the tty->alt_speed kludge
*/
set_bit(TTY_IO_ERROR, &tty->flags);
if (uport->type == PORT_UNKNOWN)
return 0;
/*
* Initialise and allocate the transmit and temporary
* buffer.
*/
if (!state->xmit.buf) {
/* This is protected by the per port mutex */
page = get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
state->xmit.buf = (unsigned char *) page;
uart_circ_clear(&state->xmit);
}
//在这里,注要完成对环形缓冲,即info->xmit的初始化.然后调用port->ops->startup( )将这个port带入到工作状态.
retval = uport->ops->startup(uport);//调用8250.c中的serial8250_startup()函数
if (retval == 0) {
if (init_hw) {
/*
* Initialise the hardware port settings.
*/
uart_change_speed(tty, state, NULL);
/*
* Setup the RTS and DTR signals once the
* port is open and ready to respond.
*/
if (tty->termios->c_cflag & CBAUD)
uart_set_mctrl(uport, TIOCM_RTS | TIOCM_DTR);
}
if (port->flags & ASYNC_CTS_FLOW) {
spin_lock_irq(&uport->lock);
if (!(uport->ops->get_mctrl(uport) & TIOCM_CTS))
tty->hw_stopped = 1;
spin_unlock_irq(&uport->lock);
}
set_bit(ASYNCB_INITIALIZED, &port->flags);
clear_bit(TTY_IO_ERROR, &tty->flags);
}
if (retval && capable(CAP_SYS_ADMIN))
retval = 0;
return retval;
}
static int serial8250_startup(struct uart_port *port)
{
struct uart_8250_port *up = (struct uart_8250_port *)port;
unsigned long flags;
unsigned char lsr, iir;
int retval;
//从结构体uart_config中取得相应的配置
up->capabilities = uart_config[up->port.type].flags;
up->mcr = 0;
if (up->port.type == PORT_16C950) { //这里我们没有调用
……………………
}
#ifdef CONFIG_SERIAL_8250_RSA
enable_rsa(up);
#endif
//清楚FIFO buffers并 disable 他们,但会在以后set_termios()函数中,重新使能他们
serial8250_clear_fifos(up);
//复位LSR,RX,IIR,MSR寄存器
(void) serial_inp(up, UART_LSR);
(void) serial_inp(up, UART_RX);
(void) serial_inp(up, UART_IIR);
(void) serial_inp(up, UART_MSR);
//若LSR寄存器中的值为0xFF.异常
if (!(up->port.flags & UPF_BUGGY_UART) &&(serial_inp(up, UART_LSR) == 0xff)) {
printk("ttyS%d: LSR safety check engaged!\n", up->port.line);
return -ENODEV;
}
//16850系列芯片的处理,忽略
if (up->port.type == PORT_16850) {
………………………………………………
}
if (is_real_interrupt(up->port.irq)) {
/*
* Test for UARTs that do not reassert THRE when the
* transmitter is idle and the interrupt has already
* been cleared. Real 16550s should always reassert
* this interrupt whenever the transmitter is idle and
* the interrupt is enabled. Delays are necessary to
* allow register changes to become visible.
*/
spin_lock_irqsave(&up->port.lock, flags);
wait_for_xmitr(up, UART_LSR_THRE);
serial_out_sync(up, UART_IER, UART_IER_THRI);
udelay(1); /* allow THRE to set */
serial_in(up, UART_IIR);
serial_out(up, UART_IER, 0);
serial_out_sync(up, UART_IER, UART_IER_THRI);
udelay(1); /* allow a working UART time to re-assert THRE */
iir = serial_in(up, UART_IIR);
serial_out(up, UART_IER, 0);
spin_unlock_irqrestore(&up->port.lock, flags);
/*
* If the interrupt is not reasserted, setup a timer to
* kick the UART on a regular basis.
*/
if (iir & UART_IIR_NO_INT) {
pr_debug("ttyS%d - using backup timer\n", port->line);
up->timer.function = serial8250_backup_timeout;
up->timer.data = (unsigned long)up;
mod_timer(&up->timer, jiffies +poll_timeout(up->port.timeout) + HZ/5);
}
}
//如果中断号有效,还要进一步判断这个中断号是否有效.具体操作为,先等待8250发送寄存器空.然后允许发送中断空的中断.然后判断IIR寄存器是否收到中断.
//如果有没有收到中断,则说明这根中断线无效.只能采用轮询的方式.关于轮询方式,我们在之后再以独立章节的形式给出分析
if (!is_real_interrupt(up->port.irq)) {
up->timer.data = (unsigned long)up;
mod_timer(&up->timer, jiffies + poll_timeout(up->port.timeout));
} else {
retval = serial_link_irq_chain(up);//定义串口的中断函数
if (retval)
return retval;
}
//如果没有设置中断号,则采用轮询方式;如果中断后有效.流程转入serial_link_irq_chain().在这个里面.会注册中断处理函数
serial_outp(up, UART_LCR, UART_LCR_WLEN8); //ULCR.WLS=11,即选择8位
spin_lock_irqsave(&up->port.lock, flags);
if (up->port.flags & UPF_FOURPORT) {
if (!is_real_interrupt(up->port.irq))
up->port.mctrl |= TIOCM_OUT1;
}
else
{
//Most PC uarts need OUT2 raised to enable interrupts.
if (is_real_interrupt(up->port.irq))
up->port.mctrl |= TIOCM_OUT2;
}
serial8250_set_mctrl(&up->port, up->port.mctrl);
/*
* Do a quick test to see if we receive an
* interrupt when we enable the TX irq.
*/
serial_outp(up, UART_IER, UART_IER_THRI);
lsr = serial_in(up, UART_LSR);
iir = serial_in(up, UART_IIR);
serial_outp(up, UART_IER, 0);
if (lsr & UART_LSR_TEMT && iir & UART_IIR_NO_INT) {
if (!(up->bugs & UART_BUG_TXEN)) {
up->bugs |= UART_BUG_TXEN;
pr_debug("ttyS%d - enabling bad tx status workarounds\n",port->line);
}
} else {
up->bugs &= ~UART_BUG_TXEN;
}
spin_unlock_irqrestore(&up->port.lock, flags);
/*
* Finally, enable interrupts. Note: Modem status interrupts
* are set via set_termios(), which will be occurring imminently
* anyway, so we don't enable them here.
*/
up->ier = UART_IER_RLSI | UART_IER_RDI;
serial_outp(up, UART_IER, up->ier);
if (up->port.flags & UPF_FOURPORT) {
unsigned int icp;
//Enable interrupts on the AST Fourport board
icp = (up->port.iobase & 0xfe0) | 0x01f;
outb_p(0x80, icp);
(void) inb_p(icp);
}
/*
* And clear the interrupt registers again for luck.
*/
(void) serial_inp(up, UART_LSR);
(void) serial_inp(up, UART_RX);
(void) serial_inp(up, UART_IIR);
(void) serial_inp(up, UART_MSR);
return 0;
}
四、串口的读
tty_driver中并末提供read接口.上层的read操作是直接到ldsic的缓存区中读数据的.那ldsic的数据是怎么送入进去的呢?继续看中断处理中的数据接收流程.即为: receive_chars().代码片段如下:
//这个应该是UART接受数据的函数uart_port结构定义在serial——core.h中
//port中断函数serial8250_handle_port()调用这个函数:
static void receive_chars(struct uart_8250_port *up, unsigned int *status)
{
……
……
uart_insert_char(&up->port, lsr, UART_LSR_OE, ch, flag);
}
//最后流据会转入uart_inset_char().这个函数是uart层提供的一个接口,代码如下:
static inline void uart_insert_char(struct uart_port *port, unsigned int status,unsigned int overrun, unsigned int ch, unsigned int flag)
{
struct tty_struct *tty = port->info->tty;
if ((status & port->ignore_status_mask & ~overrun) == 0)
tty_insert_flip_char(tty, ch, flag);
/*
* Overrun is special. Since it's reported immediately,
* it doesn't affect the current character.
*/
if (status & ~port->ignore_status_mask & overrun)
tty_insert_flip_char(tty, 0, TTY_OVERRUN);
}
//tty_insert_filp()函数数据就直接交给了ldisc.
读数据时,read()--->调用tty_io.c中的tty_read()--->n_tty.c中的 n_tty_read(),n_tty_read()从ldisc中读取数据。
五、串口的写
static const struct file_operations tty_fops = {
.llseek = no_llseek,
.read = tty_read,
.write = tty_write,
.poll = tty_poll,
.unlocked_ioctl = tty_ioctl,
.compat_ioctl = tty_compat_ioctl,
.open = tty_open,
.release = tty_release,
.fasync = tty_fasync,
};
写数据时,write()--->调用tty_io.c中的 tty_write()--->调用n_tty.c中的 n_tty_write()--->调用serial_core.c中 uart_write()--->调用serial_core.c中 uart_start()--->__uart_start()--->
调用serial_core.c中 uart_send_xchar()--->调用8250.c中的写出函数serial8250_start_tx()--->调用8250.c中的transmit_chars()--->调用8250.c中的serial_outp()--->调用8250.c中的mem_serial_out()写出去
本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/sky-heaven/p/5016436.html,如需转载请自行联系原作者