Linux USB驱动框架分析 【转】

简介:

转自:http://blog.chinaunix.net/uid-11848011-id-96188.html

初次接触与OS相关的设备驱动编写,感觉还挺有意思的,为了不至于忘掉看过的东西,笔记跟总结当然不可缺,更何况我决定为嵌入式卖命了。好,言归正传,我说一说这段时间的收获,跟大家分享一下Linux的驱动开发。但这次只先针对LinuxUSB子系统作分析,因为周五研讨老板催货。当然,还会顺带提一下其他的驱动程序写法。

       事实上,Linux的设备驱动都遵循一个惯例——表征驱动程序(用driver更贴切一些,应该称为驱动器比较好吧)的结构体,结构体里面应该包含了驱动程序所需要的所有资源。用术语来说,就是这个驱动器对象所拥有的属性及成员。由于Linux的内核用c来编写,所以我们也按照这种结构化的思想来分析代码,但我还是希望从OO的角度来阐述这些细节。这个结构体的名字有驱动开发人员决定,比如说,鼠标可能有一个叫做mouse_devstruct,键盘可能由一个keyboard_devstructdev for device,我们做的只是设备驱动)。而这次我们来分析一下Linux内核源码中的一个usb-skeleton(就是usb驱动的骨架咯),自然,他定义的设备结构体就叫做usb-skel
struct usb_skel {
     struct usb_device *      udev;                 /* the usb device for this device */
     struct usb_interface *   interface;            /* the interface for this device */
     struct semaphore       limit_sem;         /* limiting the number of writes in progress */
     unsigned char *         bulk_in_buffer;     /* the buffer to receive data */
     size_t         bulk_in_size;                  /* the size of the receive buffer */
     __u8          bulk_in_endpointAddr;        /* the address of the bulk in endpoint */
     __u8          bulk_out_endpointAddr;      /* the address of the bulk out endpoint */
     struct kref   kref;
};
       这里我们得补充说明一下一些USB的协议规范细节。USB能够自动监测设备,并调用相应得驱动程序处理设备,所以其规范实际上是相当复杂的,幸好,我们不必理会大部分细节问题,因为Linux已经提供相应的解决方案。就我现在的理解来说,USB的驱动分为两块,一块是USBbus驱动,这个东西,Linux内核已经做好了,我们可以不管,但我们至少要了解他的功能。形象得说,USBbus驱动相当于铺出一条路来,让所有的信息都可以通过这条USB通道到达该到的地方,这部分工作由usb_core来完成。当USB设备接到USB控制器接口时,usb_core就检测该设备的一些信息,例如生产厂商ID和产品的ID,或者是设备所属的classsubclassprotocol,以便确定应该调用哪一个驱动处理该设备。里面复杂细节我们不用管,我们要做的是另一块工作——usb的设备驱动。也就是说,我们就等着usb_core告诉我们要工作了,我们才工作。
       从开发人员的角度看,每一个usb设备有若干个配置(configuration)组成,每个配置又可以有多个接口(interface),每个接口又有多个设置(setting图中没有给出),而接口本身可能没有端点或者多个端点(end point)。USB的数据交换通过端点来进行,主机与各个端点之间建立起单向的管道来传输数据。而这些接口可以分为四类:
 
控制(control
       用于配置设备、获取设备信息、发送命令或者获取设备的状态报告
中断(interrupt
       USB宿主要求设备传输数据时,中断端点会以一个固定的速率传送少量数据,还用于发送数据到USB设备以控制设备,一般不用于传送大量数据。
批量(bulk
       用于大量数据的可靠传输,如果总线上的空间不足以发送整个批量包,它会被分割成多个包传输。
等时(isochronous
       大量数据的不可靠传输,不保证数据的到达,但保证恒定的数据流,多用于数据采集。
       Linux中用struct usb_host_endpoint来描述USB端点,每个usb_host_endpoint中包含一个struct usb_endpoint_descriptor结构体,当中包含该端点的信息以及设备自定义的各种信息,这些信息包括:
bEndpointAddressb for byte
       8位端点地址,其地址还隐藏了端点方向的信息(之前说过,端点是单向的),可以用掩码USB_DIR_OUTUSB_DIR_IN来确定。
bmAttributes
       端点的类型,结合USB_ENDPOINT_XFERTYPE_MASK可以确定端点是USB_ENDPOINT_XFER_ISOC(等时)、USB_ENDPOINT_XFER_BULK(批量)还是USB_ENDPOINT_XFER_INT(中断)。
wMaxPacketSize
       端点一次处理的最大字节数。发送的BULK包可以大于这个数值,但会被分割传送。
bInterval
       如果端点是中断类型,该值是端点的间隔设置,以毫秒为单位。
       在逻辑上,一个USB设备的功能划分是通过接口来完成的。比如说一个USB扬声器,可能会包括有两个接口:一个用于键盘控制,另外一个用于音频流传输。而事实上,这种设备需要用到不同的两个驱动程序来操作,一个控制键盘,一个控制音频流。但也有例外,比如蓝牙设备,要求有两个接口,第一用于ACLEVENT的传输,另外一个用于SCO链路,但两者通过一个驱动控制。在Linux上,接口使用struct usb_interface来描述,以下是该结构体中比较重要的字段:
struct usb_host_interface *altsetting(注意不是usb_interface
       其实据我理解,他应该是每个接口的设置,虽然名字上有点奇怪。该字段是一个设置的数组(一个接口可以有多个设置),每个usb_host_interface都包含一套由struct usb_host_endpoint定义的端点配置。但这些配置次序是不定的。
unsigned num_altstting
       可选设置的数量,即altsetting所指数组的元素个数。
struct usb_host_interface *cur_altsetting
       当前活动的设置,指向altsetting数组中的一个。
int minor
       当捆绑到该接口的USB驱动程序使用USB主设备号时,USB core分配的次设备号。仅在成功调用usb_register_dev之后才有效。    
       除了它可以用struct usb_host_config来描述之外,到现在为止,我对配置的了解不多。而整个USB设备则可以用struct usb_device来描述,但基本上只会用它来初始化函数的接口,真正用到的应该是我们之前所提到的自定义的一个结构体。

Linux USB驱动框架分析(二)

    好,了解过USB一些规范细节之后,我们现在来看看Linux的驱动框架。事实上,Linux的设备驱动,特别是这种hotplugUSB设备驱动,会被编译成模块,然后在需要时挂在到内核。要写一个Linux的模块并不复杂,以一个helloworld为例:
#include
#include
MODULE_LICENSE(“GPL”);
static int hello_init(void)
{
     printk(KERN_ALERT “Hello World!\n”);
     return 0;
}
static int hello_exit(void)
{
     printk(KERN_ALERT “GOODBYE!\n”);
}
module_init(hello_init);
module_exit(hello_exit);
    这个简单的程序告诉大家应该怎么写一个模块,MODULE_LICENSE告诉内核该模块的版权信息,很多情况下,用GPL或者BSD,或者两个,因为一个私有模块一般很难得到社区的帮助。module_initmodule_exit用于向内核注册模块的初始化函数和模块推出函数。如程序所示,初始化函数是hello_init,而退出函数是hello_exit
    另外,要编译一个模块通常还需要用到内核源码树中的makefile,所以模块的Makefile可以写成:
ifneq ($(KERNELRELEASE),)
obj-m:= hello.o#usb-dongle.o
else
KDIR:= /usr/src/linux-headers-$(shell uname -r)
BDIR:= $(shell pwd)
default:
     (MAKE)C(MAKE)−C(KDIR) M=$(PWD) modules
.PHONY: clean
clean:
     make -C (KDIR)M=(KDIR)M=(BDIR) clean
endif
    可以用insmodrmmod来验证模块的挂在跟卸载,但必须用root的身份登陆命令行,用普通用户加su或者sudoUbuntu上的测试是不行的。

Linux USB驱动框架分析(三)

    下面分析一下usb-skeleton的源码。这个范例程序可以在linux-2.6.17/drivers/usb下找到,其他版本的内核程序源码可能有所不同,但相差不大。大家可以先找到源码看一看,先有个整体印象。
    之前已经提到,模块先要向内核注册初始化跟销毁函数:
static int __init usb_skel_init(void)
{
     int result;
     /* register this driver with the USB subsystem */
     result = usb_register(&skel_driver);
     if (result)
         err("usb_register failed. Error number %d", result);
     return result;
}
static void __exit usb_skel_exit(void)
{
     /* deregister this driver with the USB subsystem */
     usb_deregister(&skel_driver);
}
module_init (usb_skel_init);
module_exit (usb_skel_exit);
MODULE_LICENSE("GPL");
    从代码开来,这个initexit函数的作用只是用来注册驱动程序,这个描述驱动程序的结构体是系统定义的标准结构struct usb_driver,注册和注销的方法很简单,usb_registerstruct *usb_driver, usb_deregisterstruct *usb_driver。那这个结构体需要做些什么呢?他要向系统提供几个函数入口,跟驱动的名字:
static struct usb_driver skel_driver = {
     .name =      "skeleton",
     .probe =     skel_probe,
     .disconnect = skel_disconnect,
     .id_table =    skel_table,
};
    从代码看来,usb_driver需要初始化四个东西:模块的名字skeletonprobe函数skel_probe,disconnect函数skel_disconnect,以及id_table
    在解释skel_driver各个成员之前,我们先来看看另外一个结构体。这个结构体的名字有开发人员自定义,它描述的是该驱动拥有的所有资源及状态:
struct usb_skel {
     struct usb_device *      udev;                 /* the usb device for this device */
     struct usb_interface *   interface;            /* the interface for this device */
     struct semaphore       limit_sem;         /* limiting the number of writes in progress */
     unsigned char *         bulk_in_buffer;     /* the buffer to receive data */
     size_t         bulk_in_size;                  /* the size of the receive buffer */
     __u8          bulk_in_endpointAddr;        /* the address of the bulk in endpoint */
     __u8          bulk_out_endpointAddr;      /* the address of the bulk out endpoint */
     struct kref   kref;
};
    我们先来对这个usb_skel作个简单分析,他拥有一个描述usb设备的结构体udev,一个接口interface,用于并发访问控制的semaphore(信号量) limit_sem,用于接收数据的缓冲bulk_in_buffer及其尺寸bulk_in_size,然后是批量输入输出端口地址bulk_in_endpointAddrbulk_out_endpointAddr,最后是一个内核使用的引用计数器。他们的作用我们将在后面的代码中看到。
    我们再回过头来看看skel_driver
    name用来告诉内核模块的名字是什么,这个注册之后有系统来使用,跟我们关系不大。
    id_table用来告诉内核该模块支持的设备。usb子系统通过设备的production IDvendor ID的组合或者设备的classsubclassprotocol的组合来识别设备,并调用相关的驱动程序作处理。我们可以看看这个id_table到底是什么东西:
/* Define these values to match your devices */
#define USB_SKEL_VENDOR_ID  0xfff0
#define USB_SKEL_PRODUCT_ID 0xfff0
/* table of devices that work with this driver */
static struct usb_device_id skel_table [] = {
     { USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) },
     { }                    /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, skel_table); 
    MODULE_DEVICE_TABLE的第一个参数是设备的类型,如果是USB设备,那自然是usb(如果是PCI设备,那将是pci,这两个子系统用同一个宏来注册所支持的设备。这涉及PCI设备的驱动了,在此先不深究)。后面一个参数是设备表,这个设备表的最后一个元素是空的,用于标识结束。代码定义了USB_SKEL_VENDOR_ID0xfff0USB_SKEL_PRODUCT_ID0xfff0,也就是说,当有一个设备接到集线器时,usb子系统就会检查这个设备的vendor IDproduct ID,如果它们的值是0xfff0时,那么子系统就会调用这个skeleton模块作为设备的驱动。

Linux USB驱动框架分析(四)

    probeusb子系统自动调用的一个函数,有USB设备接到硬件集线器时,usb子系统会根据production IDvendor ID的组合或者设备的classsubclassprotocol的组合来识别设备调用相应驱动程序的probe(探测)函数,对于skeleton来说,就是skel_probe。系统会传递给探测函数一个usb_interface *跟一个struct usb_device_id *作为参数。他们分别是该USB设备的接口描述(一般会是该设备的第0号接口,该接口的默认设置也是第0号设置)跟它的设备ID描述(包括Vendor IDProduction ID等)。probe函数比较长,我们分段来分析这个函数:
dev->udev = usb_get_dev(interface_to_usbdev(interface));
dev->interface = interface;
    在初始化了一些资源之后,可以看到第一个关键的函数调用——interface_to_usbdev。他同uo一个usb_interface来得到该接口所在设备的设备描述结构。本来,要得到一个usb_device只要用interface_to_usbdev就够了,但因为要增加对该usb_device的引用计数,我们应该在做一个usb_get_dev的操作,来增加引用计数,并在释放设备时用usb_put_dev来减少引用计数。这里要解释的是,该引用计数值是对该usb_device的计数,并不是对本模块的计数,本模块的计数要由kref来维护。所以,probe一开始就有初始化kref。事实上,kref_init操作不单只初始化kref,还将其置设成1。所以在出错处理代码中有kref_put,它把kref的计数减1,如果kref计数已经为0,那么kref会被释放。kref_put的第二个参数是一个函数指针,指向一个清理函数。注意,该指针不能为空,或者kfree。该函数会在最后一个对kref的引用释放时被调用(如果我的理解不准确,请指正)。下面是内核源码中的一段注释及代码:
/**
 * kref_put - decrement refcount for object.
 * @kref: object.
 * @release: pointer to the function that will clean up the object when the
 *        last reference to the object is released.
 *        This pointer is required, and it is not acceptable to pass kfree
 *        in as this function.
 *
 * Decrement the refcount, and if 0, call release().
 * Return 1 if the object was removed, otherwise return 0.  Beware, if this
 * function returns 0, you still can not count on the kref from remaining in
 * memory.  Only use the return value if you want to see if the kref is now
 * gone, not present.
 */
int kref_put(struct kref *kref, void (*release)(struct kref *kref))
{
     WARN_ON(release == NULL);
     WARN_ON(release == (void (*)(struct kref *))kfree);
      /*
      * if current count is one, we are the last user and can release object
      * right now, avoiding an atomic operation on 'refcount'
      */
     if ((atomic_read(&kref->refcount) == 1) ||
         (atomic_dec_and_test(&kref->refcount))) {
         release(kref);
         return 1;
     }
     return 0;
}
    当我们执行打开操作时,我们要增加kref的计数,我们可以用kref_get,来完成。所有对struct kref的操作都有内核代码确保其原子性。
    得到了该usb_device之后,我们要对我们自定义的usb_skel各个状态跟资源作初始化。这部分工作的任务主要是向usb_skel注册该usb设备的端点。这里可能要补充以下一些关于usb_interface_descriptor的知识,但因为内核源码对该结构体的注释不多,所以只能靠个人猜测。在一个usb_host_interface结构里面有一个usb_interface_descriptor叫做desc的成员,他应该是用于描述该interface的一些属性,其中bNumEndpoints是一个8位(b for byte)的数字,他代表了该接口的端点数。probe然后遍历所有的端点,检查他们的类型跟方向,注册到usb_skel中。
     /* set up the endpoint information */
     /* use only the first bulk-in and bulk-out endpoints */
     iface_desc = interface->cur_altsetting;
     for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
         endpoint = &iface_desc->endpoint[i].desc;
         if ( !dev->bulk_in_endpointAddr &&
                ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK) = = USB_DIR_IN) &&
             ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) = = USB_ENDPOINT_XFER_BULK)) {
              /* we found a bulk in endpoint */
              buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
              dev->bulk_in_size = buffer_size;
              dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;
              dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);
              if (!dev->bulk_in_buffer) {
                   err("Could not allocate bulk_in_buffer");
                   goto error;
              }
         }
         if (!dev->bulk_out_endpointAddr &&
            ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK)= =USB_DIR_OUT) &&
               ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)= = USB_ENDPOINT_XFER_BULK)) {
              /* we found a bulk out endpoint */
              dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;
         }
     }
     if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {
         err("Could not find both bulk-in and bulk-out endpoints");
         goto error;
     }

Linux USB驱动框架分析(五)

    接下来的工作是向系统注册一些以后会用的的信息。首先我们来说明一下usb_set_intfdata(),他向内核注册一个data,这个data的结构可以是任意的,这段程序向内核注册了一个usb_skel结构,就是我们刚刚看到的被初始化的那个,这个data可以在以后用usb_get_intfdata来得到。
usb_set_intfdata(interface, dev);
retval = usb_register_dev(interface, &skel_class);
    然后我们向这个interface注册一个skel_class结构。这个结构又是什么?我们就来看看这到底是个什么东西:
static struct usb_class_driver skel_class = {
     .name =       "skel%d",
     .fops =       &skel_fops,
     .minor_base = USB_SKEL_MINOR_BASE,
};
    它其实是一个系统定义的结构,里面包含了一名字、一个文件操作结构体还有一个次设备号的基准值。事实上它才是定义 真正完成对设备IO操作的函数。所以他的核心内容应该是skel_fops。这里补充一些我个人的估计:因为usb设备可以有多个interface,每个interface所定义的IO操作可能不一样,所以向系统注册的usb_class_driver要求注册到某一个interface,而不是device,因此,usb_register_dev的第一个参数才是interface,而第二个参数就是某一个usb_class_driver。通常情况下,linux系统用主设备号来识别某类设备的驱动程序,用次设备号管理识别具体的设备,驱动程序可以依照次设备号来区分不同的设备,所以,这里的次设备好其实是用来管理不同的interface的,但由于这个范例只有一个interface,在代码上无法求证这个猜想。
static struct file_operations skel_fops = {
     .owner = THIS_MODULE,
     .read =       skel_read,
     .write =   skel_write,
     .open =       skel_open,
     .release =    skel_release,
};
    这个文件操作结构中定义了对设备的读写、打开、释放(USB设备通常使用这个术语release)。他们都是函数指针,分别指向skel_readskel_writeskel_openskel_release这四个函数,这四个函数应该有开发人员自己实现。
    当设备被拔出集线器时,usb子系统会自动地调用disconnect,他做的事情不多,最重要的是注销class_driver(交还次设备号)和interfacedata:
dev = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);
/* give back our minor */
usb_deregister_dev(interface, &skel_class);
    然后他会用kref_put(&dev->kref, skel_delete)进行清理,kref_put的细节参见前文。
    到目前为止,我们已经分析完usb子系统要求的各个主要操作,下一部分我们在讨论一下对USB设备的IO操作。

Linux USB驱动框架分析(六)

    说到usb子系统的IO操作,不得不说usb request block,简称urb。事实上,可以打一个这样的比喻,usb总线就像一条高速公路,货物、人流之类的可以看成是系统与设备交互的数据,而urb就可以看成是汽车。在一开始对USB规范细节的介绍,我们就说过USBendpoint4种不同类型,也就是说能在这条高速公路上流动的数据就有四种。但是这对汽车是没有要求的,所以urb可以运载四种数据,不过你要先告诉司机你要运什么,目的地是什么。我们现在就看看struct urb的具体内容。它的内容很多,为了不让我的理解误导各位,大家最好还是看一看内核源码的注释,具体内容参见源码树下include/linux/usb.h
    在这里我们重点介绍程序中出现的几个关键字段:
struct usb_device  *dev
    urb所发送的目标设备。
unsigned int pipe
    一个管道号码,该管道记录了目标设备的端点以及管道的类型。每个管道只有一种类型和一个方向,它与他的目标设备的端点相对应,我们可以通过以下几个函数来获得管道号并设置管道类型:
     unsigned int usb_sndctrlpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个控制OUT端点。
     unsigned int usb_rcvctrlpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个控制IN端点。
     unsigned int usb_sndbulkpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个批量OUT端点。
     unsigned int usb_rcvbulkpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个批量OUT端点。
     unsigned int usb_sndintpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个中断OUT端点。
     unsigned int usb_rcvintpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个中断OUT端点。
     unsigned int usb_sndisocpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个等时OUT端点。
     unsigned int usb_rcvisocpipe(struct usb_device *dev, unsigned int endpoint)
           把指定USB设备的指定端点设置为一个等时OUT端点。
unsigned int transfer_flags
    当不使用DMA时,应该transfer_flags |= URB_NO_TRANSFER_DMA_MAP(按照代码的理解,希望没有错)。
int status
    当一个urb把数据送到设备时,这个urb会由系统返回给驱动程序,并调用驱动程序的urb完成回调函数处理。这时,status记录了这次数据传输的有关状态,例如传送成功与否。成功的话会是0
    要能够运货当然首先要有车,所以第一步当然要创建urb
    struct urb *usb_alloc_urb(int isoc_packets, int mem_flags);
    第一个参数是等时包的数量,如果不是乘载等时包,应该为0,第二个参数与kmalloc的标志相同。
    要释放一个urb可以用:
    void usb_free_urb(struct urb *urb);
    要承载数据,还要告诉司机目的地信息跟要运的货物,对于不同的数据,系统提供了不同的函数,对于中断urb,我们用
    void usb_fill_int_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
                   void *transfer_buffer, int buffer_length,
                   usb_complete_t complete, void *context, int interval);
    这里要解释一下,transfer_buffer是一个要送/收的数据的缓冲,buffer_length是它的长度,completeurb完成回调函数的入口,context由用户定义,可能会在回调函数中使用的数据,interval就是urb被调度的间隔。
    对于批量urb和控制urb,我们用:
    void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
                                    void *transfer_buffer, int buffer_length, usb_complete_t complete,
                                    void *context);
    void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
                                    unsigned char* setup_packet,void *transfer_buffer,
                     int buffer_length, usb_complete_t complete,void *context);
    控制包有一个特殊参数setup_packet,它指向即将被发送到端点的设置数据报的数据。
    对于等时urb,系统没有专门的fill函数,只能对各urb字段显示赋值。
    有了汽车,有了司机,下一步就是要开始运货了,我们可以用下面的函数来提交urb
    int usb_submit_urb(struct urb *urb, int mem_flags);
    mem_flags有几种:GFP_ATOMICGFP_NOIOGFP_KERNEL,通常在中断上下文环境我们会用GFP_ATOMIC
    当我们的卡车运货之后,系统会把它调回来,并调用urb完成回调函数,并把这辆车作为函数传递给驱动程序。我们应该在回调函数里面检查status字段,以确定数据的成功传输与否。下面是用urb来传送数据的细节。
/* initialize the urb properly */
usb_fill_bulk_urb(urb, dev->udev,
                     usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr),
                     buf, writesize, skel_write_bulk_callback, dev);
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
/* send the data out the bulk port */
retval = usb_submit_urb(urb, GFP_KERNEL);
    这里skel_write_bulk_callback就是一个完成回调函数,而他做的主要事情就是检查数据传输状态和释放urb
dev = (struct usb_skel *)urb->context;
/* sync/async unlink faults aren't errors */
if (urb->status && !(urb->status = = -ENOENT || urb->status == -ECONNRESET || urb->status = = -ESHUTDOWN)) {
         dbg("%s - nonzero write bulk status received: %d", __FUNCTION__, urb->status);
}
/* free up our allocated buffer */
usb_buffer_free(urb->dev, urb->transfer_buffer_length,
              urb->transfer_buffer, urb->transfer_dma);
    事实上,如果数据的量不大,那么可以不一定用卡车来运货,系统还提供了一种不用urb的传输方式,而usb-skeleton的读操作正是采用这种方式实现:
/* do a blocking bulk read to get data from the device */
retval = usb_bulk_msg(dev->udev,
                           usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr),
                           dev->bulk_in_buffer,
                           min(dev->bulk_in_size, count),
                           &bytes_read, 10000);
/* if the read was successful, copy the data to userspace */
if (!retval) {
         if (copy_to_user(buffer, dev->bulk_in_buffer, bytes_read))
                retval = -EFAULT;
         else
                retval = bytes_read;
}
    程序使用了usb_bulk_msg来传送数据,它的原型如下:
    int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,void *data,
                 int len, int *actual length, int timeout)
    这个函数会阻塞等待数据传输完成或者等到超时,data是输入/输出缓冲,len是它的大小,actual length是实际传送的数据大小,timeout是阻塞超时。
    对于控制数据,系统提供了另外一个函数,他的原型是:
         Int usb_contrl_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
                                  __u8 requesttype, __u16 value, __u16 index, void *data,
                                  __u16 size, int timeout);
    request是控制消息的USB请求值、requesttype是控制消息的USB请求类型,value是控制消息的USB消息值,index是控制消息的USB消息索引。具体是什么,暂时不是很清楚,希望大家提供说明。
    至此,Linux下的USB驱动框架分析基本完成了。









本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/sky-heaven/p/5068829.html,如需转载请自行联系原作者

相关文章
|
13天前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
51 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
19天前
|
安全 Ubuntu Linux
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
38 9
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
|
4月前
|
Java Linux API
Linux设备驱动开发详解2
Linux设备驱动开发详解
60 6
|
4月前
|
消息中间件 算法 Unix
Linux设备驱动开发详解1
Linux设备驱动开发详解
62 5
|
4月前
|
Ubuntu NoSQL Linux
Linux内核和驱动
Linux内核和驱动
40 2
|
3月前
|
Linux API SoC
Linux电压和电流调节器框架 【ChatGPT】
Linux电压和电流调节器框架 【ChatGPT】
|
3月前
|
Linux API
Linux里的高精度时间计时器(HPET)驱动 【ChatGPT】
Linux里的高精度时间计时器(HPET)驱动 【ChatGPT】
|
4月前
|
Linux
【linux】【驱动】<specifier>-map-pass-thru讲解
【linux】【驱动】<specifier>-map-pass-thru讲解
24 0
|
存储 Unix Linux
浅入分析Linux
Linux 操作系统必须完成的两个主要目的 与硬件部分交互, 为包含在硬件平台上的所有底层可编程部件提供服务 为运行在计算机系统上的应用程序(即所谓的用户空间)提供执行环境 一些操作系统运行所有的用户程序都直接与硬件部分进行交互, 比如典型的MS-DOS。
1010 0
|
1月前
|
Linux 网络安全 数据安全/隐私保护
Linux 超级强大的十六进制 dump 工具:XXD 命令,我教你应该如何使用!
在 Linux 系统中,xxd 命令是一个强大的十六进制 dump 工具,可以将文件或数据以十六进制和 ASCII 字符形式显示,帮助用户深入了解和分析数据。本文详细介绍了 xxd 命令的基本用法、高级功能及实际应用案例,包括查看文件内容、指定输出格式、写入文件、数据比较、数据提取、数据转换和数据加密解密等。通过掌握这些技巧,用户可以更高效地处理各种数据问题。
110 8