跟我一起数据挖掘(22)——spark入门

简介:

Spark简介

Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。

image

Spark优点

Spark是基于内存,是云计算领域的继Hadoop之后的下一代的最热门的通用的并行计算框架开源项目,尤其出色的支持Interactive Query、流计算、图计算等。 
Spark在机器学习方面有着无与伦比的优势,特别适合需要多次迭代计算的算法。同时Spark的拥有非常出色的容错和调度机制,确保系统的稳定运行,Spark目前的发展理念是通过一个计算框架集合SQL、Machine Learning、Graph Computing、Streaming Computing等多种功能于一个项目中,具有非常好的易用性。目前SPARK已经构建了自己的整个大数据处理生态系统,如流处理、图技术、机器学习、NoSQL查询等方面都有自己的技术,并且是Apache顶级Project,可以预计的是2014年下半年在社区和商业应用上会有爆发式的增长。Spark最大的优势在于速度,在迭代处理计算方面比Hadoop快100倍以上;Spark另外一个无可取代的优势是:“One Stack to rule them all”,Spark采用一个统一的技术堆栈解决了云计算大数据的所有核心问题,这直接奠定了其一统云计算大数据领域的霸主地位;

下图是使用逻辑回归算法的使用时间:

image

Spark目前支持scala、python、JAVA编程。

作为Spark的原生语言,scala是开发Spark应用程序的首选,其优雅简洁的代码,令开发过mapreduce代码的码农感觉象是上了天堂。

可以架构在hadoop之上,读取hadoop、hbase数据。

spark的部署方式

1、standalone模式,即独立模式,自带完整的服务,可单独部署到一个集群中,无需依赖任何其他资源管理系统。

2、Spark On Mesos模式。这是很多公司采用的模式,官方推荐这种模式(当然,原因之一是血缘关系)。

3、Spark On YARN模式。这是一种最有前景的部署模式。

image

spark本机安装

流程:进入linux->安装JDK->安装scala->安装spark。

JDK的安装和配置(略)。

安装scala,进入http://www.scala-lang.org/download/下载。

image

下载后解压缩。

tar zxvf scala-2.11.6.tgz //改名 mv scala-2.11.6 scala //设置配置 export SCALA_HOME=/home/hadoop/software/scala
export PATH=$SCALA_HOME/bin;$PATH

source /etc/profile

scala -version
Scala code runner version 2.11.6 -- Copyright 2002-2013, LAMP/EPFL

scala设置成功。

http://spark.apache.org/downloads.html下载spark并安装。

image

下载后解压缩。

进入$SPARK_HOME/bin,运行

./run-example SparkPi

运行结果

Spark assembly has been built with Hive, including Datanucleus jars on classpath
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
15/03/14 23:41:40 INFO SparkContext: Running Spark version 1.3.0
15/03/14 23:41:40 WARN Utils: Your hostname, localhost.localdomain resolves to a loopback address: 127.0.0.1; using 192.168.126.147 instead (on interface eth0) 15/03/14 23:41:40 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address 15/03/14 23:41:41 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 15/03/14 23:41:41 INFO SecurityManager: Changing view acls to: hadoop 15/03/14 23:41:41 INFO SecurityManager: Changing modify acls to: hadoop 15/03/14 23:41:41 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop); users with modify permissions: Set(hadoop) 15/03/14 23:41:42 INFO Slf4jLogger: Slf4jLogger started 15/03/14 23:41:42 INFO Remoting: Starting remoting 15/03/14 23:41:42 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@192.168.126.147:60926] 15/03/14 23:41:42 INFO Utils: Successfully started service 'sparkDriver' on port 60926. 15/03/14 23:41:42 INFO SparkEnv: Registering MapOutputTracker 15/03/14 23:41:43 INFO SparkEnv: Registering BlockManagerMaster 15/03/14 23:41:43 INFO DiskBlockManager: Created local directory at /tmp/spark-285a6144-217c-442c-bfde-4b282378ac1e/blockmgr-f6cb0d15-d68d-4079-a0fe-9ec0bf8297a4 15/03/14 23:41:43 INFO MemoryStore: MemoryStore started with capacity 265.1 MB 15/03/14 23:41:43 INFO HttpFileServer: HTTP File server directory is /tmp/spark-96b3f754-9cad-4ef8-9da7-2a2c5029c42a/httpd-b28f3f6d-73f7-46d7-9078-7ba7ea84ca5b 15/03/14 23:41:43 INFO HttpServer: Starting HTTP Server 15/03/14 23:41:43 INFO Server: jetty-8.y.z-SNAPSHOT 15/03/14 23:41:43 INFO AbstractConnector: Started SocketConnector@0.0.0.0:42548
15/03/14 23:41:43 INFO Utils: Successfully started service 'HTTP file server' on port 42548. 15/03/14 23:41:43 INFO SparkEnv: Registering OutputCommitCoordinator 15/03/14 23:41:43 INFO Server: jetty-8.y.z-SNAPSHOT 15/03/14 23:41:43 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
15/03/14 23:41:43 INFO Utils: Successfully started service 'SparkUI' on port 4040. 15/03/14 23:41:43 INFO SparkUI: Started SparkUI at http://192.168.126.147:4040 15/03/14 23:41:44 INFO SparkContext: Added JAR file:/home/hadoop/software/spark-1.3.0-bin-hadoop2.4/lib/spark-examples-1.3.0-hadoop2.4.0.jar at http://192.168.126.147:42548/jars/spark-examples-1.3.0-hadoop2.4.0.jar with timestamp 1426347704488 15/03/14 23:41:44 INFO Executor: Starting executor ID <driver> on host localhost 15/03/14 23:41:44 INFO AkkaUtils: Connecting to HeartbeatReceiver: akka.tcp://sparkDriver@192.168.126.147:60926/user/HeartbeatReceiver 15/03/14 23:41:44 INFO NettyBlockTransferService: Server created on 39408
15/03/14 23:41:44 INFO BlockManagerMaster: Trying to register BlockManager 15/03/14 23:41:44 INFO BlockManagerMasterActor: Registering block manager localhost:39408 with 265.1 MB RAM, BlockManagerId(<driver>, localhost, 39408) 15/03/14 23:41:44 INFO BlockManagerMaster: Registered BlockManager 15/03/14 23:41:45 INFO SparkContext: Starting job: reduce at SparkPi.scala:35
15/03/14 23:41:45 INFO DAGScheduler: Got job 0 (reduce at SparkPi.scala:35) with 2 output partitions (allowLocal=false) 15/03/14 23:41:45 INFO DAGScheduler: Final stage: Stage 0(reduce at SparkPi.scala:35) 15/03/14 23:41:45 INFO DAGScheduler: Parents of final stage: List() 15/03/14 23:41:45 INFO DAGScheduler: Missing parents: List() 15/03/14 23:41:45 INFO DAGScheduler: Submitting Stage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:31), which has no missing parents 15/03/14 23:41:45 INFO MemoryStore: ensureFreeSpace(1848) called with curMem=0, maxMem=278019440
15/03/14 23:41:45 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1848.0 B, free 265.1 MB) 15/03/14 23:41:45 INFO MemoryStore: ensureFreeSpace(1296) called with curMem=1848, maxMem=278019440
15/03/14 23:41:45 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1296.0 B, free 265.1 MB) 15/03/14 23:41:45 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:39408 (size: 1296.0 B, free: 265.1 MB) 15/03/14 23:41:45 INFO BlockManagerMaster: Updated info of block broadcast_0_piece0 15/03/14 23:41:45 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:839
15/03/14 23:41:45 INFO DAGScheduler: Submitting 2 missing tasks from Stage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:31) 15/03/14 23:41:45 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks 15/03/14 23:41:45 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, PROCESS_LOCAL, 1340 bytes) 15/03/14 23:41:45 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, PROCESS_LOCAL, 1340 bytes) 15/03/14 23:41:45 INFO Executor: Running task 1.0 in stage 0.0 (TID 1) 15/03/14 23:41:45 INFO Executor: Running task 0.0 in stage 0.0 (TID 0) 15/03/14 23:41:45 INFO Executor: Fetching http://192.168.126.147:42548/jars/spark-examples-1.3.0-hadoop2.4.0.jar with timestamp 1426347704488 15/03/14 23:41:45 INFO Utils: Fetching http://192.168.126.147:42548/jars/spark-examples-1.3.0-hadoop2.4.0.jar to /tmp/spark-db1e742b-020f-4db1-9ee3-f3e2d90e1bc2/userFiles-96c6db61-e95e-4f9e-a6c4-0db892583854/fetchFileTemp5600234414438914634.tmp 15/03/14 23:41:46 INFO Executor: Adding file:/tmp/spark-db1e742b-020f-4db1-9ee3-f3e2d90e1bc2/userFiles-96c6db61-e95e-4f9e-a6c4-0db892583854/spark-examples-1.3.0-hadoop2.4.0.jar to class loader 15/03/14 23:41:47 INFO Executor: Finished task 1.0 in stage 0.0 (TID 1). 736 bytes result sent to driver 15/03/14 23:41:47 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 736 bytes result sent to driver 15/03/14 23:41:47 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 1560 ms on localhost (1/2) 15/03/14 23:41:47 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 1540 ms on localhost (2/2) 15/03/14 23:41:47 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 15/03/14 23:41:47 INFO DAGScheduler: Stage 0 (reduce at SparkPi.scala:35) finished in 1.578 s 15/03/14 23:41:47 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:35, took 2.099817 s
Pi is roughly 3.14438
15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/metrics/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/stage/kill,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/static,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/executors/threadDump/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/executors/threadDump,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/executors/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/executors,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/environment/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/environment,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/storage/rdd/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/storage/rdd,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/storage/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/storage,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/pool/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/pool,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/stage/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/stage,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/stages,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/jobs/job/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/jobs/job,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/jobs/json,null} 15/03/14 23:41:47 INFO ContextHandler: stopped o.s.j.s.ServletContextHandler{/jobs,null} 15/03/14 23:41:47 INFO SparkUI: Stopped Spark web UI at http://192.168.126.147:4040 15/03/14 23:41:47 INFO DAGScheduler: Stopping DAGScheduler 15/03/14 23:41:47 INFO MapOutputTrackerMasterActor: MapOutputTrackerActor stopped!
15/03/14 23:41:47 INFO MemoryStore: MemoryStore cleared 15/03/14 23:41:47 INFO BlockManager: BlockManager stopped 15/03/14 23:41:47 INFO BlockManagerMaster: BlockManagerMaster stopped 15/03/14 23:41:47 INFO OutputCommitCoordinator$OutputCommitCoordinatorActor: OutputCommitCoordinator stopped!
15/03/14 23:41:47 INFO SparkContext: Successfully stopped SparkContext 15/03/14 23:41:47 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon. 15/03/14 23:41:47 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports.

可以看到输出结果为3.14438。

目录
相关文章
|
机器学习/深度学习 存储 传感器
【机器学习入门与实践】合集入门必看系列,含数据挖掘项目实战
【机器学习入门与实践】合集入门必看系列,含数据挖掘项目实战
|
机器学习/深度学习 存储 分布式计算
Hadoop生态系统中的机器学习与数据挖掘技术:Apache Mahout和Apache Spark MLlib的应用
Hadoop生态系统中的机器学习与数据挖掘技术:Apache Mahout和Apache Spark MLlib的应用
|
机器学习/深度学习 数据可视化 算法
【机器学习入门与实践】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等)
【机器学习入门与实践】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等)
|
机器学习/深度学习 数据挖掘 TensorFlow
数据挖掘从入门到放弃(七):TensorFlow 和 keras 实现线性回归 LinearRegression
数据挖掘从入门到放弃(七):TensorFlow 和 keras 实现线性回归 LinearRegression
202 0
|
机器学习/深度学习 算法 数据挖掘
数据挖掘从入门到放弃(六):K-means 聚类
数据挖掘从入门到放弃(六):K-means 聚类
128 0
|
机器学习/深度学习 数据可视化 数据挖掘
数据挖掘从入门到放弃(五)seaborn 的数据可视化
数据挖掘从入门到放弃(五)seaborn 的数据可视化
241 0
|
存储 算法 数据挖掘
数据挖掘从入门到放弃(四):手撕(绘)关联规则挖掘算法
数据挖掘从入门到放弃(四):手撕(绘)关联规则挖掘算法
175 0
|
机器学习/深度学习 算法 数据挖掘
数据挖掘从入门到放弃(三):朴素贝叶斯
数据挖掘从入门到放弃(三):朴素贝叶斯
197 0
|
机器学习/深度学习 算法 数据挖掘
数据挖掘从入门到放弃(二):决策树
数据挖掘从入门到放弃(二):决策树
153 0
|
机器学习/深度学习 自然语言处理 算法
数据挖掘从入门到放弃(一):线性回归和逻辑回归
数据挖掘从入门到放弃(一):线性回归和逻辑回归
192 0

热门文章

最新文章