详解go语言的array和slice 【二】

简介:

 上一篇  详解go语言的array和slice 【一】已经讲解过,array和slice的一些基本用法,使用array和slice时需要注意的地方,特别是slice需要注意的地方比较多。上一篇的最后讲解到创建新的slice时使用第三个索引来限制slice的容量,在操作新slice时,如果新slice的容量大于长度时,添加新元素依然后使源的相应元素改变。这一篇里我会讲解到如何避免这些问题,以及迭代、和做为方法参数方面的知识点。

slice的长度和容量设置为同一个值

  如果在创建新的slice时我们把他的长度和容量的值设置为样的值,那么在append新元素时,底层会创建一个新的array并把之前的值复制过去。这样就不会影响之前共同的底层array了。

复制代码
    // 创建一个容量和长度均为6的slice
    slice1 := []int{5, 23, 10, 2, 61, 33}
    // 对slices1进行切片,长度为2容量为3
    slice2 := slice1[1:3:3]
    fmt.Println("cap", cap(slice2))
    fmt.Println("slice2", slice2)

    //修改一个共同指向的元素
    //两个slice的值都会修改
    slice2[0] = 11111
    fmt.Println("slice1", slice1)
    fmt.Println("slice2", slice2)

    // 增加一个元素
    slice2 = append(slice2, 55555)

    fmt.Println("slice1: ", slice1)
    fmt.Println("slice2: ", slice2)
复制代码

  输出结果

cap 2
slice2 [23 10]
slice1 [5 11111 10 2 61 33]
slice2 [11111 10]
slice1:  [5 11111 10 2 61 33]
slice2:  [11111 10 55555]

  代码中的长度和容量是一样的,长度和容量的计算公式看我的上一篇博客。增加一个元素后,原来共同指向的底层数据是没有变的。因为slice2的底层array被重新赋值了。

迭代slice

  go语言内置一个关键字range用于迭代集合,当然他也可以迭代slice,也可以使用  _  来忽略我们不关心的元素,但是如果只关心index则不需这么写 for index,_ := range slice1。下在给出完整代码

复制代码
    // 创建一个容量和长度均为6的slice
    slice1 := []int{5, 23, 10, 2, 61, 33}

    for index, value := range slice1 {
        fmt.Println("index: ", index, " value: ", value)
    }

    // 可以忽略我们不关心的元素
    // 只关心value
    for _, value := range slice1 {
        fmt.Println("value ", value)
    }

    // 只关心index, 可以不用 _
    for index := range slice1 {
        fmt.Println("index: ", index)
    }
复制代码

 

   需要注意的是rang 迭代的value值并是一个复本,我们可以对比一下迭代的value和原slice内相应index下value的地址:

复制代码
    // 创建一个容量和长度均为6的slice
    slice1 := []int{5, 23, 10, 2, 61, 33}

    for index, value := range slice1 {
        fmt.Println("index: ", index, " value address : ", &value, " slice1 value address", &slice1[index])

    }
复制代码

  输出结果

index:  0  value address :  0xc04204e088  slice1 value address 0xc04206a030
index:  1  value address :  0xc04204e088  slice1 value address 0xc04206a038
index:  2  value address :  0xc04204e088  slice1 value address 0xc04206a040
index:  3  value address :  0xc04204e088  slice1 value address 0xc04206a048
index:  4  value address :  0xc04204e088  slice1 value address 0xc04206a050
index:  5  value address :  0xc04204e088  slice1 value address 0xc04206a058

  slice1中value的地址是不断变化的。而迭代的value值的地址没有变化,这是因为value是一个变量,为次迭代的时候赋不同的值。我们把代码写成下面这样,你就清楚了

    var index, value int
    for index, value = range slice1 {
        fmt.Println("index: ", index, &index, " value address : ", &value, " slice1 value address", &slice1[index])

    }

   除了使用rang 也可以使用传统的for循环来做迭代

    slice1 := []int{5, 23, 10, 2, 61, 33}
    
    for i, len := 1, len(slice1); i < len; i++ {
        fmt.Println("index: ", i, " value:", slice1[i])
    }

 

 slice作为方法参数

   由于slice的特殊结构,有一个指针指向一个数组

    s := make([]int, 2, 5)
    fmt.Println("len: ", len(s))
    fmt.Println("cap: ", cap(s))
    s = append(s, 2)

    s[0] = 12

 

  所以,slice做为方法的参数传递时,只会复制slice本身而不会复制slice底层的array.如果我们创建一个int类型有100万长度的slice ,把他传递给一个方法时,只需要复制24个字节就够了。指针需要8个,长度和容量都是8个。

复制代码
const size int = 1000 * 1000

func main() {
    slice0 := make([]int, size)
    fmt.Println("slice0 len: ", len(slice0), " cap :", cap(slice0))
    doSomeThing(slice0)
}

func doSomeThing(s []int) {
    fmt.Println(len(s))
}
复制代码

 

 

本文转自lpxxn博客园博客,原文链接:http://www.cnblogs.com/li-peng/p/7541554.html,如需转载请自行联系原作者

相关文章
|
10天前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
11天前
|
编译器 Go
揭秘 Go 语言中空结构体的强大用法
Go 语言中的空结构体 `struct{}` 不包含任何字段,不占用内存空间。它在实际编程中有多种典型用法:1) 结合 map 实现集合(set)类型;2) 与 channel 搭配用于信号通知;3) 申请超大容量的 Slice 和 Array 以节省内存;4) 作为接口实现时明确表示不关注值。此外,需要注意的是,空结构体作为字段时可能会因内存对齐原因占用额外空间。建议将空结构体放在外层结构体的第一个字段以优化内存使用。
|
11天前
|
存储 缓存 安全
Go 语言中的 Sync.Map 详解:并发安全的 Map 实现
`sync.Map` 是 Go 语言中用于并发安全操作的 Map 实现,适用于读多写少的场景。它通过两个底层 Map(`read` 和 `dirty`)实现读写分离,提供高效的读性能。主要方法包括 `Store`、`Load`、`Delete` 等。在大量写入时性能可能下降,需谨慎选择使用场景。
|
11天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
27 3
|
12天前
|
SQL 安全 Java
阿里双十一背后的Go语言实践:百万QPS网关的设计与实现
解析阿里核心网关如何利用Go协程池、RingBuffer、零拷贝技术支撑亿级流量。 重点分享: ① 如何用gRPC拦截器实现熔断限流; ② Sync.Map在高并发读写中的取舍。
|
13天前
|
存储 算法 安全
基于 Go 语言的公司内网管理软件哈希表算法深度解析与研究
在数字化办公中,公司内网管理软件通过哈希表算法保障信息安全与高效管理。哈希表基于键值对存储和查找,如用户登录验证、设备信息管理和文件权限控制等场景,Go语言实现的哈希表能快速验证用户信息,提升管理效率,确保网络稳定运行。
26 0
|
15天前
|
开发框架 前端开发 Go
eino — 基于go语言的大模型应用开发框架(二)
本文介绍了如何使用Eino框架实现一个基本的LLM(大语言模型)应用。Eino中的`ChatModel`接口提供了与不同大模型服务(如OpenAI、Ollama等)交互的统一方式,支持生成完整响应、流式响应和绑定工具等功能。`Generate`方法用于生成完整的模型响应,`Stream`方法以流式方式返回结果,`BindTools`方法为模型绑定工具。此外,还介绍了通过`Option`模式配置模型参数及模板功能,支持基于前端和用户自定义的角色及Prompt。目前主要聚焦于`ChatModel`的`Generate`方法,后续将继续深入学习。
125 7
|
16天前
|
存储 开发框架 Devops
eino — 基于go语言的大模型应用开发框架(一)
Eino 是一个受开源社区优秀LLM应用开发框架(如LangChain和LlamaIndex)启发的Go语言框架,强调简洁性、可扩展性和可靠性。它提供了易于复用的组件、强大的编排框架、简洁明了的API、最佳实践集合及实用的DevOps工具,支持快速构建和部署LLM应用。Eino不仅兼容多种模型库(如OpenAI、Ollama、Ark),还提供详细的官方文档和活跃的社区支持,便于开发者上手使用。
98 8
|
16天前
|
存储 Go
Go 语言入门指南:切片
Golang中的切片(Slice)是基于数组的动态序列,支持变长操作。它由指针、长度和容量三部分组成,底层引用一个连续的数组片段。切片提供灵活的增减元素功能,语法形式为`[]T`,其中T为元素类型。相比固定长度的数组,切片更常用,允许动态调整大小,并且多个切片可以共享同一底层数组。通过内置的`make`函数可创建指定长度和容量的切片。需要注意的是,切片不能直接比较,只能与`nil`比较,且空切片的长度为0。
Go 语言入门指南:切片
|
16天前
|
存储 算法 Go
Go语言实战:错误处理和panic_recover之自定义错误类型
本文深入探讨了Go语言中的错误处理和panic/recover机制,涵盖错误处理的基本概念、自定义错误类型的定义、panic和recover的工作原理及应用场景。通过具体代码示例介绍了如何定义自定义错误类型、检查和处理错误值,并使用panic和recover处理运行时错误。文章还讨论了错误处理在实际开发中的应用,如网络编程、文件操作和并发编程,并推荐了一些学习资源。最后展望了未来Go语言在错误处理方面的优化方向。

热门文章

最新文章