LeetCode: LRU Cache 最近最少使用算法 缓存设计

简介:

设计并实现最近最久未使用(Least Recently Used)缓存。

 

题目描述:

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

设计并实现最近最久未使用的缓存数据结构,支持 get 和 set 操作.

get()-如果 key 存在,返回对应的 value 值,否则返回 -1.

set()-插入 key 对应的 value 到缓存中,如果缓存已满,将最近最久未使用的元素从缓存中移除。

要实现这个设计,我们先回顾一下大学课堂上的知识。
LRU,即最近最少使用,是操作系统内存管理的一种页面置换算法,
常见的页面置换算法,最佳置换算法(OPT,理想置换算法),先进先出置换算法(FIFO),
最近最久未使用算法(LRU),最少使用算法。


其中,最佳置换算法是一种理想情况下的页面置换算法,实际上不可能实现。该算法的基本思想是发生缺页时,有些页面在内存中,其中有一页将很快被访问(也包含紧接着的下一条指令的那页),而其他页面则可能要到10、100或者1000条指令后才会被访问,每个页面都可以用在该页面首次被访问前所要执行的指令数进行标记。最佳页面置换算法规定标记最大的页应该被置换。但当缺页发生时,操作系统无法知道各个页面下一次是在什么时候被访问。这个算法无法实现,但可以用于对可实现算法的性能进行衡量。

另外两种主要算法,LFU算法-实现缓存,FIFO算法-实现缓存,可以查看这里

LRU的实现方法有很多,传统的LRU实现方法:

1.计数器。最简单的情况是使每个页表项对应一个使用时间字段,并给CPU增加一个逻辑时钟或计数器。每次存储访问,该时钟都加1。每当访问一个页面时,时钟寄存器的内容就被复制到相应页表项的使用时间字段中。这样我们就可以始终保留着每个页面最后访问的“时间”。在置换页面时,选择该时间值最小的页面。
2.栈。用一个栈保留页号。每当访问一个页面时,就把它从栈中取出放在栈顶上。这样一来,栈顶总是放有目前使用最多的页,而栈底放着目前最少使用的页。由于要从栈的中间移走一项,所以要用具有头尾指针的双向链连起来。

(1)使用 LinkedHashMap实现Lrucache

Java语言可以利用 LinkedHashMap, LinkedHashMap 是有序的哈希表,可以保存记录的插入顺序,并且按使用顺序排列。
重写其中的removeEldestEntry(Map.Entry)方法,就可以实现LRU算法。

在Mysql Jdbc Util和Apache的很多Jar包中,都是使用LinkedHashMap实现LRUCache。
下面的代码来自mysql-connector-java-5.1.18-bin.jar

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
package  com.mysql.jdbc.util;
 
import  java.util.LinkedHashMap;
import  java.util.Map;
 
public  class  LRUCache  extends  LinkedHashMap
{
 
     public  LRUCache( int  maxSize)
     {
         super (maxSize,  0 .75F,  true );
         maxElements = maxSize;
     }
 
     protected  boolean  removeEldestEntry(java.util.Map.Entry eldest)
     {
         return  size() > maxElements;
     }
 
     private  static  final  long  serialVersionUID = 1L;
     protected  int  maxElements;
}

  

不过LeetCode的OJ肯定不支持这样实现,上面的代码修改后提交,提示 Comoile Error 。

(2)使用双向链表实现

JDK中,LinkedHashMap是通过继承HashMap,维护一个双向链表实现,

当某个Cache位置被命中,通过调整链表的指向将该位置调整到头位置,新加入的内容直接放在链表头,在多次进行Cache操作后,最近使用的Cache就会向链表头部移动,链表尾部就是命中次数最少,最久未使用的Cache。
空间充满时,移除尾部的数据就可以了。有几点需要注意,一个是Key不存在的情况,一个是缓存设计要求Key唯一。

下面使用双向链表实现LRU Cache,主要是维护一个缓存设定容量,当前容量,以及双向链表的头尾节点,方便移动和删除。

复制代码
import java.util.HashMap;
/**
 *  近期最少使用算法 设计缓存
 */
public class LRUCache {
    
    private int cacheSize;//缓存容量
    private int currentSize;//当前容量
    private HashMap<Object, CacheNode> nodes;//缓存容器
    private CacheNode head;//链表头
    private CacheNode last;//链表尾

    class CacheNode{
        CacheNode prev;//前一节点
        CacheNode next;//后一节点
        int value;//
        int key;//
        CacheNode() {
        }
    }
    
    //初始化缓存
    public LRUCache(int capacity) {
        currentSize=0;
        cacheSize=capacity;
        nodes=new HashMap<Object, CacheNode>(capacity);    
    }
        
    public Integer get(int key) {
        CacheNode node = nodes.get(key);
        if (node != null) {
            move(node);
            return node.value;
        } else {
            return -1;//error code
        }
            
    }
        
    public void set(int key, int value) {
        CacheNode node = nodes.get(key);
        //重复Key
        if(node!=null){
            node.value=value;
            move(node);
            nodes.put(key, node);
        }else
           {//key未重复,正常流程
            node =new CacheNode();
            if(currentSize>=cacheSize){
                if (last != null){//缓存已满,进行淘汰
                    nodes.remove(last.key);}
                removeLast();//移除链表尾部并后移    
            }else{
                currentSize++;
            }
            
            node.key=key;
            node.value=value;
            move(node);
            nodes.put(key, node);
        }
    }
    
    //移动链表节点至头部
    private void move(CacheNode cacheNode){
        if(cacheNode==head)
            return;
        //链接前后节点
        if(cacheNode.prev!=null)
            cacheNode.prev.next=cacheNode.next;
        if(cacheNode.next!=null)
            cacheNode.next.prev=cacheNode.prev;
        //头尾节点
        if (last == cacheNode)
            last = cacheNode.prev;
        if (head != null) {
            cacheNode.next = head;
            head.prev = cacheNode;
        }
        //移动后的链表
        head = cacheNode;
        cacheNode.prev = null;
        //节点唯一的情况
        if (last == null)
            last = head;
    }
    
    //移除指定缓存
    public void remove(int key){
        CacheNode cacheNode =  nodes.get(key);
        if (cacheNode != null) {
            if (cacheNode.prev != null) {
                cacheNode.prev.next = cacheNode.next;
            }
            if (cacheNode.next != null) {
                cacheNode.next.prev = cacheNode.prev;
            }
            if (last == cacheNode)
                last = cacheNode.prev;
            if (head == cacheNode)
                head = cacheNode.next;
        }
        
    }
    //删除尾部的结点,即去除最近最久未使用数据
    private void removeLast(){
        if(last!=null){
            if(last.prev!=null){
                last.prev.next=null;                
            }else{//空间大小为1的情况
                head = null;                
            }
            last = last.prev;
        }
    }
    
    public void clear() {
        head = null;
        last = null;
    }
    //测试用例
//    public static void main(String[] args){
//        LRUCache lCache=new LRUCache(2);
//        lCache.set(2, 1);
//        lCache.set(1, 1);
//        lCache.set(2, 3);
//        lCache.set(4, 1);
//        System.out.println(lCache.get(1));
//        System.out.println(lCache.get(2));
//        
//    }

}
复制代码

 


目录
相关文章
|
3月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
55 0
|
5月前
|
存储 缓存 NoSQL
【Azure Redis 缓存】关于Azure Cache for Redis 服务在传输和存储键值对(Key/Value)的加密问题
【Azure Redis 缓存】关于Azure Cache for Redis 服务在传输和存储键值对(Key/Value)的加密问题
|
5月前
|
缓存 弹性计算 NoSQL
【Azure Redis 缓存 Azure Cache For Redis】Redis连接池
【Azure Redis 缓存 Azure Cache For Redis】Redis连接池
|
2月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
3月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
40 2
|
5月前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
263 1
|
5月前
|
缓存 NoSQL Redis
【Azure Redis 缓存】Azure Cache for Redis 服务的导出RDB文件无法在自建的Redis服务中导入
【Azure Redis 缓存】Azure Cache for Redis 服务的导出RDB文件无法在自建的Redis服务中导入
|
5月前
|
缓存 开发框架 NoSQL
【Azure Redis 缓存】VM 里的 Redis 能直接迁移到 Azure Cache for Redis ? 需要改动代码吗?
【Azure Redis 缓存】VM 里的 Redis 能直接迁移到 Azure Cache for Redis ? 需要改动代码吗?
|
5月前
|
缓存 NoSQL Unix
【Azure Redis 缓存】Azure Cache for Redis 中如何快速查看慢指令情况(Slowlogs)
【Azure Redis 缓存】Azure Cache for Redis 中如何快速查看慢指令情况(Slowlogs)
|
5月前
|
缓存 NoSQL Redis
【Azure Redis 缓存】Azure Cache for Redis 是否记录具体读/写(Get/Set)或删除(Del)了哪些key呢?
【Azure Redis 缓存】Azure Cache for Redis 是否记录具体读/写(Get/Set)或删除(Del)了哪些key呢?

热门文章

最新文章