Hadoop危机?替代HDFS的8个绝佳方案

简介:

HDFS(Hadoop Distributed File System)是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,坦白说HDFS是一个不错的分布式文件系统,它有很多的优点,但也存在有一些缺点,包括:不适合低延迟数据访问、无法高效存储大量小文件、不支持多用户写入及任意修改文件。

Apache软件基金会成立的时候,HDFS就一直在想办法提高它的性能和可用性,坦白说,这也许对试点项目、非常规项目、要求不严格的大环境中比较适用,但是对于某些Hadoop用户来说,他们对于性能、可用性、企业级特性有较高的要求,且注重直接附加存储(DAS)架构,特别是老版本的Hadoop没有高性能的主节点,那么接下来8个产品就是代替HDFS的绝佳方案。

1. Cassandra (DataStax)

并非一个完全的文件系统,而是一个开源、NoSQL 键值(key-value)商店。这给依靠快速数据访问的Web 应用多了一个HDFS选择。简单来说它把Hadoop融合在Cassandra里面,支持Web应用通过Hadoop快速访问数据, 而Hadoop可以快速访问流入Cassandra的数据。

2. Ceph

Ceph 是一个开源、多管齐下的操作系统,因为其高性能并行文件系统的特性,有人甚至认为它是基于Hadoop环境下的HDFS的接班人,因为自2010年就有研究者在寻找这个特性。

3. Cleversafe:分散存储网络

本周一Cleversafe宣布将融合Hadoop的并行编程技术和自己的分散存贮网络。其原理是通过把整个元数据分布在集群中(不是依靠单个主节点、不是依靠复制),Cleversafe表示这比HDFS更快、更稳定、更具扩展性。

4. GPFS (IBM)

IBM一直在向高性能要求的用户销售其并行文件系统,包括世界上最快的超级电脑,2010年它推出了基于Hadoop的GPFS, 并宣布GPFS不共享集群版本比Hadoop快多了,因为

它在内核级别中运行,而不是在操作系统中运行例如HDFS。

5. Isilon (EMC)

EMC提供Hadoop发行版已经一年了,但2012年1月转型为HDFS企业级别的新方案——Isilon 的 OneFS文件系统。因为Isilon可以读取 NFS, CIFS以及 HDFS 协议, 一个单独的 Isilon NAS系统可以摄入、处理、分析数据。

6. Lustre

HPC存储提供商Xyratex 增在2011年的一份报道中写到, 基于Lustre的集群会比基于HDFS的集群更快更便宜。

7. MapR 文件系统

MapR 文件系统在业内已经具有一定知名度了,不仅MapR宣布它自己的文件系统比HDFS快2-5倍(实际上有20倍),它还具有镜像、快照、高性能这些企业用户喜欢的特点。

8. NetApp Hadoop开放方案

NetApp重新改版了物理Hadoop结构:把HDFS放在磁盘阵列中,通过这样来达到更快、更稳定、更安全的Hadoop工作。

目录
相关文章
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
207 6
|
3月前
|
SQL 分布式计算 监控
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
76 3
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
141 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
60 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
77 0
|
分布式计算 应用服务中间件 Docker
Hadoop HDFS分布式文件系统Docker版
一、Hadoop文件系统HDFS 构建单节点的伪分布式HDFS 构建4个节点的HDFS分布式系统 nameNode secondnameNode datanode1 datanode2 其中 datanode2动态节点,在HDFS系统运行时,==动态加入==。
2670 0
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
96 2
|
24天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
60 4
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
145 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
124 1

热门文章

最新文章

相关实验场景

更多