linux内存管理2:内存映射和需求分页(英文名字:demand Paging,又叫:缺页中断)【转】

简介:

转自:http://blog.csdn.net/zhangxinrun/article/details/5873148

当某个程序映象开始运行时,可执行映象必须装入进程的虚拟地址空间。如果该程序用到了任何一个共享库,则共享库也必须装入进程的虚拟地址空间。实际上,Linux 并不将映象装入物理内存,相反,可执行文件只是被链接到进程的虚拟地址空间中(磁盘空间中)。随着程序的运行,被引用的程序部分会由操作系统装入物理内存。这种将映象链接到进程地址空间的方法称为“内存映射”。可执行映像.
每个进程的虚拟内存由一个 mm_struct 结构代表,我们将在下一章中详细讲述该结构。该结构中实际包含了当前执行映象的有关信息,并且包含了一组指向 vm_area_struct 结构的指针。如图 10-5 所示,每个 vm_area_struct 描述了一个虚拟内存区域的起点和终点、进程对内存的访问权限以及一个对内存的操作例程集。操作例程集是 Linux 操作该内存区域时所使用的例程集合。例如,当进程试图访问的虚拟内存当前不在物理内存当中时(通过页故障),Linux 就可以利用操作集中的一个例程执行正确的操作,在这种情况下为 nopage 操作。


        图 10-5 vm_area_struct 数据结构示意图
当可执行映象映射到进程的虚拟地址空间时,将产生一组 vm_area_struct 结构来描述虚拟内存区域的起始点和终止点,每个 vm_struct 结构代表可执行映象的一部分,可能是可执行代码,也可能是初始化的变量或未初始化的数据。随着 vm_area_struct 结构的生成,这些结构所描述的虚拟内存区域上的标准操作函数也由 Linux 初始化。
某个可执行映象映射到进程虚拟内存中并开始执行时,因为只有很少一部分装入了物理内存,因此很快就会访问尚未装入物理内存的虚拟内存区域。这时,处理器将向 Linux 报告一个页故障及其对应的故障原因。
这种页故障的出现原因有两种,一是程序出现错误,例如向随机物理内存中写入数据,这种情况下,虚拟内存是无效的,Linux 将向程序发送 SIGSEGV 信号并终止程序的运行;另一种情况是,虚拟地址有效,但其所对应的页当前不在物理内存中,这时,操作系统必须从磁盘映象或交换文件中将内存装入物理内存。
那么,Linux 如何判断页故障发生时,虚拟内存地址是否是有效的呢?如前所述,Linux 利用 vm_area_struct 数据结构描述进程的虚拟内存空间,为了查找出现页故障虚拟内存相应的 vm_area_struct 结构的位置,Linux 内核同时维护一个由 vm_area_struct 结构形成的 AVL(Adelson-Velskii and Landis)树。利用 AVL 树,可快速寻找发生页故障的虚拟地址所在的内存页区域。如果搜索不到这一内存区域,则说明该虚拟地址是无效的,否则该虚拟地址是有效的。
也有可能因为进程在虚拟地址上进行的操作非法而产生页故障,例如在只读页中写入数据。这时操作系统会同样发送内存错误信号到该进程。有关页的访问控制信息(只读页、只写页、可读可写页、可执行代码页等)包含在页表项中。
对有效的虚拟地址,Linux 必须区分页所在的位置,即判断页是在交换文件中,还是在可执行映象中。为此,Linux 通过页表项中的信息区分页所在的位置。如果该页的页表项是无效的,但非空,则说明该页处于交换文件中,操作系统要从交换文件装入页(有关内存交换的内容在下一节中讲述)。否则,默认情况下,Linux 会分配一个新的物理页并建立一个有效的页表项;对于映象的内存映射来讲,则会分配新的物理页,更新页表项属性信息,并从映象中装入页。
这时,所需的页装入了物理内存,页表项也同时被更新,然后进程就可以继续执行了。这种只在必要时才将虚拟页装入物理内存的处理称为“需求分页”。
在处理页故障的过程中,因为要涉及到磁盘访问等耗时操作,因此操作系统会选择另外一个进程进入执行状态。
















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/sky-heaven/p/5657811.html,如需转载请自行联系原作者

相关文章
|
11天前
|
算法 程序员
深入理解操作系统内存管理:分页系统的优势与挑战
【4月更文挑战第7天】 在现代操作系统中,内存管理是一项至关重要的任务,它确保了计算机能够高效、安全地运行各种程序。分页系统作为内存管理的一种技术,通过将物理内存分割成固定大小的单元——页面,为每个运行的程序提供了一种独立且连续的内存地址空间。该技术不仅简化了内存分配,还允许更高效的内存使用和保护。本文探讨了分页系统的核心原理,优势以及面临的挑战,旨在为读者揭示其在操作系统设计中的重要性。
|
30天前
|
存储 Linux 编译器
Linux C/C++ 编程 内存管理之道:探寻编程世界中的思维乐趣
Linux C/C++ 编程 内存管理之道:探寻编程世界中的思维乐趣
50 0
|
23天前
|
存储 算法 Linux
【Linux 应用开发 共享内存】深入理解和实践 ftruncate:共享内存的有效管理
【Linux 应用开发 共享内存】深入理解和实践 ftruncate:共享内存的有效管理
54 5
|
27天前
|
Linux Shell C语言
【Shell 命令集合 设备管理 】Linux 设置键盘映射表 loadkeys命令 使用指南
【Shell 命令集合 设备管理 】Linux 设置键盘映射表 loadkeys命令 使用指南
35 0
|
27天前
|
Shell Linux C语言
【Shell 命令集合 磁盘维护 】Linux 创建一个初始化内存盘 mkinitrd命令使用教程
【Shell 命令集合 磁盘维护 】Linux 创建一个初始化内存盘 mkinitrd命令使用教程
33 0
|
27天前
|
存储 算法 Shell
【Shell 命令集合 设备管理 】Linux 显示当前系统中定义的键盘映射表 dumpkeys命令 使用指南
【Shell 命令集合 设备管理 】Linux 显示当前系统中定义的键盘映射表 dumpkeys命令 使用指南
31 0
|
11天前
|
Prometheus 监控 Cloud Native
【Linux】查看系统内存命令(详细讲解)
【Linux】查看系统内存命令(详细讲解)
|
15天前
|
存储 缓存 监控
深入解析linux内存指标:快速定位系统内存问题的有效技巧与实用方法(free、top、ps、vmstat、cachestat、cachetop、sar、swap、动态内存、cgroops、oom)
深入解析linux内存指标:快速定位系统内存问题的有效技巧与实用方法(free、top、ps、vmstat、cachestat、cachetop、sar、swap、动态内存、cgroops、oom)
|
23天前
|
存储 缓存 安全
深入理解内存映射:mmap映射的背后原理以及和共享内存的差异
深入理解内存映射:mmap映射的背后原理以及和共享内存的差异
53 0
|
23天前
|
存储 缓存 监控
Linux 系统 内存通用指标以及查询方式
Linux 系统 内存通用指标以及查询方式
18 0